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1 Deep Learning for 3-D Geometry

Three-dimensional geometric models are widely used in many �elds such as computer graphics, computer-
aided design (CAD), visualization, and multimedia. These models are represented in various forms, the
most common of which include surface meshes, point clouds, voxels, and implicit functions (shown in
Figure 1). Naturally, algorithms for processing such data are of high demand. Following the great success
of deep learning methods for image processing, there has been a recent trend to generalize such methods to
3-D data. Figure 2 shows some of the applications where deep learning methods have been most successful.
In this document, we will review some of the recent papers that devise deep learning architectures to reason
about 3-D geometric models.

1.1 Multi-View Based Methods

We start with the work of Su et al. [2015], which is based on a simple observation: a 3-D model can be
rendered as one or multiple 2-D images, which can, in turn, be processed by conventional convolutional
neural networks (CNN). This approach is often referred to as multi-view based and can be used for ap-
plications such as object classi�cation and model retrieval. The networks are referred to as a multi-view
convolutional neural network (MVCNN).

Figure 3 depicts a schematic of the MVCNN work�ow. First, the input which is 3-D surface mesh is rendered
as 2-D images from various angles. These images are fed to a conventional CNN (tied across all renders).
The per-image outputs of the �rst CNN are then pooled (using the max function) to produce a single
set of hidden units and are then passed to a second CNN. The second CNN will then output per-class
probabilities, or its hidden units at a particular layer can be used to de�ne a metric for object retrieval.

The method is evaluated on the ModelNet40 [Wu et al., 2015] dataset for classi�cation and object retrieval
tasks. It achieves an accuracy of 90% for classi�cation, which has not been beaten (at least by a consid-
erable margin) even to this date (Table 1 shows comparisons against other methods). A strength of this
method is that it leverages existing tools in the image processing community, and it can use pre-trained
networks on natural images. On the other hand, the method has many parameters such as the location
and angle of the camera for the rendered images, and the parameters of two large CNNs for image classi-
�cation. Furthermore, it is not clear how the method can be extended for applications that need per point
labels (e.g., segmentation or normal estimation).

1



(a) (b) (c) (d)

Figure 1: Examples of 3-D geometry representations: a) surface mesh, b) point cloud, c) voxels, and d)
implicit function. Note that implicit functions are often, but not necessarily, stored on a spatial grid.
Furthermore, voxels are a special case of piecewise constant binary implicit functions that are true in the
grid cells that lie inside the shape and are false otherwise.
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Figure 2: Examples of deep learning applications on 3-D data: a) classi�cation, b) semantic segmentation,
c) closest object retrieval, and d) point-cloud normal estimation. Note that in the retrieval task considered
here is not concerned with generating similar examples, instead the goal is to �nd similar examples in the
training data using a metric de�ned by the networks hidden units. Furthermore, the point cloud normal
estimation task is trivial unless the pointcloud is relatively sparse.
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Figure 3: A schematic of the MVCNN architecture. Image is courtesy of Su et al. [2015].

1.2 Voxel Based Methods

Another obvious extension of CNNs to 3-D data is to represent geometric models as a �eld over a spa-
tial grid, where convolution operations are well de�ned, and optimized implementations are available.
Common choices include a binary inside-outside function, the surface normal �eld, and distance from the
surface (possibly multiplied by a Gaussian �lter).

In this front, Wu et al. [2015] use a binary function on a uniform 30×30×30 grid as their input data rep-
resentation. Instead of a discriminative model, they build a generative, convolutional deep belief network
(CDBN). This allows them to support a wide range of applications such as classi�cation, simultaneous
shape recognition and completion from depth images, next best view prediction, object retrieval, and even
object generation. The paper introduces the ModelNet dataset and uses it to validate the performance of
the network. The main weaknesses of the method are that training a generative model is quite di�cult and
requires a lot of heuristic machinery. Moreover, an input resolution of 30×30×30 (a restriction imposed
by memory and computation cost) might not be enough to capture the inputs well enough, which can
partly explain the loss of accuracy in classi�cation (Table 1).

Wang et al. [2017] and Riegler et al. [2017] observe that the change in the input �eld is only abrupt near
the model surface, and use it to alleviate the high memory cost of a uniform spatial grid. Instead of a
uniform grid, they use an octree (one among many approaches to build a non-uniform grid) to represent the
input �eld and implement pooling and convolution operations for this representation. The main di�erence
between their methods is di�erent algorithmic choices for e�cient octree representation and convolution
operations on the GPU. Also, Wang et al. [2017] use the normal �eld as the input, while Riegler et al. [2017]
use the binary inside-outside function. The methods are evaluated on the ModelNet [Wu et al., 2015],
[Riemenschneider et al., 2014], and [Lähner et al., 2016] datasets for applications including classi�cation,
segmentation, and retrieval (see Table 1 for comparisons of classi�cation accuracy). Perhaps the main
downside of this two papers is that they cannot be trivially implemented for execution on the GPU using
conventional neural network libraries (e.g., TensorFlow [Abadi et al., 2016], PyTorch [Paszke et al., 2017])
and need hand-tailored GPU code. Moreover, the approach of Wang et al. [2017] requires the surface
normals, which might not be readily available, or cannot be con�dently computed for complicated sparse
point clouds (and it obviously cannot do normal estimation). Finally, in some cases, it is not clear which
improvements are due to the novel convolution operations, and which are due to the di�erent network
architecture, or training procedures.
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Figure 4: A schematic of the �eld probing neural network (FPNN) architecture for classi�cation. The input
is a geometric model (a), the distance from surface �eld of the model, f , is calculated (b), the distance is
multiplied by a Gaussian �lter to increase the attention to the model surface (c), each probe which consists
of a set of positions, xi , and weights, wi (d) outputs a hidden unit z =

∑
iwif (xi) (e). The hidden units z

are then passed through a fully connected layer (f) to obtain the �nal per-class probabilities (g).

1.3 Departing From Voxels

Several works have explored the alternative to voxel-based convolutions. Li et al. [2016] propose a �eld
probing scheme (Figure 4). They �rst convert the input shape into a distance �eld �ltered by a Gaussian to
increase the attention to the model surface. They would then sample this �eld at several positions via a set
of probes. Note that each probe is simply a set of positions and weights which act as shown in Figure 4. The
positions and weights of each �lter are learned during training, while the number of �lters and the number
of points/weights per �lter are hyper-parameters. The output units of the probes are then passed to a fully
connected network to predict per-class probabilities. The method only supports the task of classi�cation,
and is validated on the ModelNet40 [Wu et al., 2015] dataset (see Table 1 for accuracy). The proposed
method also has many hyper-parameters (number of probes and their positions and weights) and is very
sensitive to initialization. On the other hand, the method is much more memory e�cient than uniform
grid based convolutions, while it is much simpler to implement than octree based convolutions.

Qi et al. [2017a] introduce a network architecture that can directly process point clouds. The input to
the network is the 3-D position (and optionally additional information such as normals or colors) of a
variable number of points, n. The main challenge, in comparison to a conventional convolutional neural
network (CNN), is that the output should be invariant under rigid body transformations or permutations
of the input points. They introduce the vanilla pointnet architecture (shown in Figure 5) which satis�es
the order invariance property and theoretically prove that it can approximate any order invariant func-
tion, given enough hidden units. With the addition of further heuristics, they attempt to improve the
networks invariance under rigid body transformation and allow for part segmentations. We do not go
into the detail of these heuristics as they were beaten by the authors’ next extension of pointnet [Qi et al.,
2017b]. The method is validated by considering tasks such as object recognition, segmentation of single ob-
jects, and segmentation of scenes on multiple 3-D shape datasets (ModelNet40 [Wu et al., 2015], Shapenet
Part [Chang et al., 2015], and Stanford 3D semantic parsing [Armeni et al., 2017] datasets). The proposed
network architecture achieves results on par with the state of the art methods that use convolutions on
voxels (see Table 1 for classi�cation accuracy). Since sampling points from the surface of a 3-D model leads
to much less data compared to multi-view renders or uniform volumetric sampling. Thus, the proposed
network is more e�cient (∼ 10 − 100×) and has fewer parameters (∼ 10×) compared to its grid-based
and multi-view-based predecessors. The sampling of point clouds can also be done adaptively for further
optimization. Nevertheless, the neighborhood of each point is completely ignored in the network, until
the very last max-pooling layer. As this strategy is ignoring valuable information from the neighborhood
(e.g., curvature), the proposed network might need a substantial number of training examples and can be
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Figure 5: A schematic of the vanilla pointnet architecture for classi�cation. The input is a n × 3 matrix,
where each row is the coordinates of a point in the point-cloud. First, each point is passed through a
fully connected neural network with (3,64,128,1024) units tied across all points. The per-point outputs
are then pooled using the max function, and passed to a second fully-connected neural network with
(1024,512,256, k) units, where k is the number of classes.

very sensitive. The authors’ next work [Qi et al., 2017b] attempts to �x this issue.

1.4 Generalized Convolution and Pooling Operations

Some papers introduce novel convolution and pooling like the transformation that are not based on voxel
grids. Klokov and Lempitsky [2017] introduce such an operation based on k-d trees. Their framework for
classi�cation is shown in Figure 6. Given an input point cloud, a k-d tree of a certain depth is constructed
based on the point cloud’s density. The point cloud is then subsampled such that a single point exists per
tree leaf which constitutes the input of the network. For each tree level and each stump direction, a matrix,
W , and a bias vector, b, is de�ned. Then, at each layer of the network, the depth of the tree is reduced by
one, and the hidden unit of each new leaf is found as a function of its children, and the W matrix and b
vector of the corresponding stump. For example, in Figure 6,

z4 = σ
(
Wgreen

[
z8
z9

]
+ bgreen

)
,

where σ is the activation function. TheW matrices and b vectors are the parameters of the network and are
determined by training. The approach is validated on the MNIST, ShapeNet Core [Chang et al., 2015], and
ModelNet [Wu et al., 2015] datasets for classi�cation and part segmentation (see Table 1 for classi�cation
accuracy). Overall, the method seems to be very accurate in classi�cation compared the concurrent work.
For segmentation, the method seems to be inferior to pointnet [Qi et al., 2017a]. It would be interesting
to see the performance of the method on more complicated datasets, and more challenging tasks such
as scene segmentation. Also, the k-d tree construction task does not seem to be very GPU friendly and
constitutes a large portion of the training/testing time.

Similarly, Qi et al. [2017b] introduce a novel convolution and pooling like transformation. Instead of a k-d
tree, they use the vanilla pointnet [Qi et al., 2017a] network to build this operation. A simpli�ed version
of their network for classi�cation is shown in Figure 7. Given an input point cloud, they sample a series of
furthest points and then apply tied pointnet architectures to all the points in a certain neighborhood of the
sampled ones. They also introduce an approach to combine multiple neighborhood sizes of each sample, to
increase the network’s robustness to nonuniform point cloud densities. The process is repeated for multiple
layers until a single �nal unit (but with a large dimension) is arrived at. This unit is �nally passed to a fully
connected neural network that generates per-class probabilities. A slightly more complicated hourglass
network with skip connections is also proposed for shape segmentation, where interpolation is used as the
deconvolution operator. The proposed network is validated on the MNIST, ModelNet40 [Wu et al., 2015],
SHREC16 [Lähner et al., 2016], and ScanNet [Dai et al., 2017] datasets for classi�cation and segmentation
(see Table 1 for classi�cation accuracy). The method outperforms ablations studies are also performed to
investigate the e�ect of missing data and non-uniform point cloud densities, which the method successfully
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Figure 6: A schematic of the classi�cation architecture of Klokov and Lempitsky [2017]. a) Input shape as
a point cloud. b) A k-d tree is constructed based on the density of this point-cloud. c) The point-cloud is
subsampled, such that there is only a single point per leaf. These points are then transformed to arrive
at a single output vector. d) The order at which the input and hidden unit points are combined is shown
in more detail. Circles with the same colors denote parameter tying. The �gure is partly adapted from
[Klokov and Lempitsky, 2017].
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Figure 7: A schematic of the classi�cation architecture of pointnet++ [Qi et al., 2017b]. a) Input shape as
a point cloud (in blue). b) A series of farthest distance points are sampled from the point cloud (in red).
c) A tied vanilla pointnet network [Qi et al., 2017a] is applied at a certain neighborhood of each point to
arrive at the next layers hidden units. d) This process is repeated until we arrive at a single unit with a
possibly large dimension. e) The �nal unit is passed through a fully connected neural network that outputs
per-class probabilities.

handles. Pointnet++ seems to be a strong architecture, at the cost of many parameters, and non-GPU
friendly operations (e.g., furthest point sampling, and �nding points within a certain distance).

Atzmon et al. [2018] de�ne convolution and pooling operations on pointclouds by leveraging radial basis
functions (RBF). Their convolution operation is shown in Figure 8. This operation �rst extends per-point
information in a point-cloud to a continuous function in the ambient volume using RBF basis functions.
Then, a volume convolution is applied to this smooth function, where the convolution itself is also con-
structed using RBFs. Finally, the volumetric function is restricted back to the point cloud by sampling.
In a similar manner, pooling and restriction (see original paper for more details) are de�ned and used to
construct classi�cation and segmentation networks. The networks are validated on the ModelNet40 [Wu
et al., 2015] and Shapenet Part [Chang et al., 2015] datasets for classi�cation and segmentation, respec-
tively (see Table 1 for classi�cation accuracy). One plus side of this approach is perhaps its elegance and
unifying nature. Also, it is theoretically justi�ed to be robust to noisy and sparse point-clouds. On the
other hand, the extension/restriction operation heavily rely on sparse matrix operations and are di�cult
to optimize.
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Figure 8: Schematic of the convolution operation of Atzmon et al. [2018]. A function de�ned on a point-
cloud (a) is �rst extended to the ambient volume using RBF basis functions (b), to which a volume convo-
lution is then applied (c). Finally, the volumetric function is restricted back to the point cloud by sampling
(d). The Figure is courtesy of Atzmon et al. [2018].

Table 1: Classi�cation accuracy of the reviewed methods on the ModelNet40 dataset.
method accuracy method accuracy
MVCNN+ [Su et al., 2015] 90.1% 3-D Shapenets [Wu et al., 2015] 77.3%
OCNN∗ [Wang et al., 2017] 90.6% OCTNET[Riegler et al., 2017] 86.5%
FPNN [Li et al., 2016] 88.4% pointnet [Qi et al., 2017a] 89.2%
escape-from-cells [Klokov and Lempitsky, 2017] 90.6% pointnet++ [Qi et al., 2017b] 90.7%
RBF based convolution [Atzmon et al., 2018] 92.3%

+: uses mesh structure
∗: uses normals

1.5 Graph Based Methods

As mentioned above, pointnet achieved promising results by applying feed-forward operations on indi-
vidual points and aggregating them with an unordered aggregating operation. Since pointnet does not
su�ciently exploit local structure, pointnet++ was introduced to address this issue by partitioning points
into smaller clusters and perform pointnet operations on each cluster. As a result, pointnet++ provides
an improvement in performance but su�ers from computing time (also a slight increase in the number of
parameters compared to vanilla pointnet). Due to the trending attention of graph-based neural network in
the deep learning community [Kipf and Welling, 2016; Yang et al., 2018; Teney et al., 2017] (semi-supervised
document classi�cation, image scene graph generation and visual question answering), there is also atten-
tion for exploiting graph structure for point clouds. For example, KCNet was introduced by Shen et al.
[2018] to improve the computational e�ciency of pointnet++. Speci�cally, they provide two operations
for local point cloud structure. One operation is to de�ne a convolution kernel for point cloud to capture
the local geometric structure of point cloud. Another emphasizes on feature aggregation on a k-nearest-
neighbor graph based on 3d position. As a result, KCNet achieves comparable accuracy in point cloud
classi�cation and parts segmentation tasks while maintaining the number of parameters and inference
speed similar to that of the vanilla pointnet (see Table 2).
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Table 2: Model size and inference time. “M” stands for million. Networks were tested on a PC with a single
NVIDIA GTX 1080 GPU and an Intel i7-8700@3.2 GHz 12 cores CPU (caption provided in the original
paper).

Method #params (M) Fwd. time (ms)
PointNet (vanilla) 0.8 11.6

PointNet++ 1.0 163.2
KCNet (M=16) 0.9 18.5
KCNet (M=3) 0.9 12.0
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