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Surface Reconstruction

Generate a mesh from a set of surface samples

Left: 17K points sampled on the statue of an elephant with a Minolta
laser scanner. Right: reconstructed surface mesh.



Implicit Function Approach

@ Find the indicator function which has values less than zero
outside the model and greater than zero inside

@ Use a contouring algorithm, e.g. marching cubes, to find zero
set




Poisson Reconstruction

Input:
@ A point cloud
@ Oriented normals at each point
Output:
@ The indicator function
Pros:
@ Robust as it solves a well-posed sparse Poisson problem
@ Resilient to noise as it processes all the points globally
Cons:
@ Requiring oriented normals

@ Capturing certain holes requires additional human input



The gradient of the indicator function is equal to the field defined
by the surface normals near the surface, and zero elsewhere:
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Cast into a minimization problem:
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Numerical Method

Assumption: Uniform sample density

Definition of smoothed x
Three-dimensional Grid

Numerical Solution Function Space
Finding smoothed %

Discretizing V?y = V- V into Lx = v

Solving the linear system of equations



Smoothing the indicator function
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Smoothing the indicator function
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Schematic of the filter function Integration over all the damin



Three-dimensional Grid

@ Octree O with prescribed depth D.

@ Each sampling point must lie inside a depth D cell.
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Basis Functions

@ For every cell o € O, a basis function is defined as
_ 1 —o.c
FO(Q) — ow3 ¢( qo.(;v )
@ ¢ is a quadratic function approximating a Gaussian with unit
variance.

® Fo(p) will be used as the filter function too, i.e.,
F(p —o.c) = Fo(p).




Solution Space

The numerical solution will be defined as:

X(p) = Z XoFo(p)

ocO

The final goal is to find the discrete values x, for every octree cell.



Finding V

Original Definition:

—

V(q0) = /M F(p — qo)N(p)dp

Numerical Approximation (S is the set of sample points):

V(qo) = Z F(s — q0)s.NPs
seS

Ignoring the constant surface area and using trilinear interpolation:

V(CI()) = Z Z ao,sFo(qO)s'N

sES 0eNp(s)



Finding V
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Simple case when s=0 Trilinear interpolation



Solving for X, values

Similar to the Finite Element Methods, we seek the values of X, to
minimize:

> UVEX =V -V, Fo)

ocO

Which reduces to minimizing the following norm:

1x = vl
Vo = /M Fo(@)V - V(q)dq

Lo = /M V- Fo(q)Fo(a)dg



Multigrid Method

Ideal procedure when dealing with:

@ Huge system of linear equations
@ Avrising from the discretization of a Poisson problem
@ On a hierarchical structured grid

e Rank deficient left hand side (no boundary conditions).

Catch:

o Difficult to implement



Multigrid Method

Simple Jacobi iteration as smoother:
xkt) = — [ x(K)

Restriction, prolongation, and multigrid cycles:




Schematic Example
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Michael Angelo’s David

@ 215 million data points from 1000 scans
@ 22 million triangle reconstruction

@ Compute Time: 2.1 hours

o Peak Memory: 6600MB




Michael Angelo’s David
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Conclusion

@ Advantages:
o Resilient to noise
o Considers all sample points simultaneously
e Can be done in parallel or out-of-core

@ Issues:

e Requires further post-processing for capturing certain features

o Requires sample point normals as a priori

@ Resulting surface does not necessarily contain any of the
sample points

e Not much is mentioned about creases



