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Surface Reconstruction

Generate a mesh from a set of surface samples

Left: 17K points sampled on the statue of an elephant with a Minolta
laser scanner. Right: reconstructed surface mesh.



Implicit Function Approach

1 Find the indicator function which has values less than zero
outside the model and greater than zero inside

2 Use a contouring algorithm, e.g. marching cubes, to find zero
set



Poisson Reconstruction

Input:

A point cloud

Oriented normals at each point

Output:

The indicator function

Pros:

Robust as it solves a well-posed sparse Poisson problem

Resilient to noise as it processes all the points globally

Cons:

Requiring oriented normals

Capturing certain holes requires additional human input



Main Idea

The gradient of the indicator function is equal to the field defined
by the surface normals near the surface, and zero elsewhere:

∇χ = ~V

Cast into a minimization problem:

∇2χ = ∇ · ~V



Numerical Method

Assumption: Uniform sample density

Definition of smoothed χ

Three-dimensional Grid

Numerical Solution Function Space

Finding smoothed ~V

Discretizing ∇2χ = ∇ · V into Lx = v

Solving the linear system of equations



Smoothing the indicator function



Smoothing the indicator function

(χ ∗ F̃ )(q0) =

∫
M
F̃ (p − q0)χ(p)dp

∇(χ ∗ F̃ )(q0) =

∫
M
F̃ (p − q0)~N(p)dp



Three-dimensional Grid

Octree O with prescribed depth D.

Each sampling point must lie inside a depth D cell.



Basis Functions

For every cell o ∈ O, a basis function is defined as
Fo(q) = 1

o.w3φ(q−o.co.w )

φ is a quadratic function approximating a Gaussian with unit
variance.

Fo(p) will be used as the filter function too, i.e.,
F̃ (p − o.c) = Fo(p).



Solution Space

The numerical solution will be defined as:

X (p) =
∑
o∈O

χoFo(p)

The final goal is to find the discrete values χo for every octree cell.



Finding ~V

Original Definition:

~V (q0) =

∫
M
F̃ (p − q0)~N(p)dp

Numerical Approximation (S is the set of sample points):

~V (q0) =
∑
s∈S

F̃ (s − q0)s.~NPs

Ignoring the constant surface area and using trilinear interpolation:

~V (q0) =
∑
s∈S

∑
o∈ND(s)

αo,sFo(q0)s.~N



Finding ~V

F̃ (s − q0) =
∑

o∈ND(s)

αo,sFo(q0)



Solving for Xo values

Similar to the Finite Element Methods, we seek the values of Xo to
minimize: ∑

o∈O
|〈∇2X −∇ · ~V ,Fo〉|2

Which reduces to minimizing the following norm:

‖Lx − v‖2

vo =

∫
M
Fo(q)∇ · ~V (q)dq

Loo′ =

∫
M
∇ · Fo(q)Fo′(q)dq



Multigrid Method

Ideal procedure when dealing with:

Huge system of linear equations

Arising from the discretization of a Poisson problem

On a hierarchical structured grid

Rank deficient left hand side (no boundary conditions).

Catch:

Difficult to implement



Multigrid Method

Simple Jacobi iteration as smoother:

x (k+1) = v − Lx (k)

Restriction, prolongation, and multigrid cycles:



Schematic Example



Michael Angelo’s David

215 million data points from 1000 scans

22 million triangle reconstruction

Compute Time: 2.1 hours

Peak Memory: 6600MB



Michael Angelo’s David



Comparison to VRIP



Conclusion

Advantages:

Resilient to noise
Considers all sample points simultaneously
Can be done in parallel or out-of-core

Issues:

Requires further post-processing for capturing certain features
Requires sample point normals as a priori
Resulting surface does not necessarily contain any of the
sample points
Not much is mentioned about creases


