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Motivation

Physics simulations can sometimes be cast as regression problems.

Speed.

Only data is available.
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The problem

Dynamical system, ṡ = f(t, s,u)

s: state variables

u: control inputs

Example, three link pendulum:

s = [θ1, θ2, θ3, θ̇1, θ̇2, θ̇3]

u = [τ1, τ2, τ3]

Other forces included in f
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The problem

Dynamical system, ṡ = f(t, s,u)

s: state variables

u: control inputs

Example, three link pendulum:
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The problem – continued

Neuroanimator: Fast neural network emulation and control of physics-based models.

Grzeszczuk, Radek, Demetri Terzopoulos, and Geoffrey Hinton. SIGGRAPH 1998.

Given a pendulum with fixed properties (fixed f),

Train a neural network to solve:

ṡ = f(t, s,u), s = s0,u = u(t),

i.e., the behaviour of the system.

which is “visually” acceptable.

Implement a control algorithm,

i.e., solve for u in the inverse problem:

ṡ = f̃(t, s,u), s = s(t)
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Learning problem

Input: y = [s0,u0]

Regression Variable: c = [s∆t − s0], when
u(t) = u0

f is found using the Lagrange equations.

The ODE is solved for using RK45.

Sampling:

Y = [rand(n, 3)*r1 rand(n, 3)*r2 rand(n, 3)*r3]

Paramters: ∆t, r1, r2, r3.
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Neural network

Single layer NN with hidden units: [8*size(y)]

Deep residual NN with hidden units: [20, 20, 3*size(y)]

We did not perform an extensive search for the network
architectures.

Optimization: SGD, non-linear CG, Newton with linesearch

minimize.m by Carl Edward Rasmussen.
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Results – no u

n links=3; M=[1,1,1]; L=[1,1,1]; LG=L; g=10; I=[0,0,0]; c=[1,1,1];

n=5000; r1=2pi; r2=2;

Arch. Train error Test error

deep 4.13% 4.75%
single layer 7.35% 7.72%
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0
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3

t = 0.950000 

rk
single
deep
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http://h00shi.github.io/FILES/eosc550_pres/anim-no-u.gif


Results – with u

n links=3; M=[1,1,1]; L=[1,1,1]; LG=L; g=10; I=[0,0,0]; c=[1,1,1];

n=5000; r1=2pi; r2=2; u=[5*cos(t),0,sin(t)]

Arch. Train error Test error

deep 7.23% 7.97%
single layer 10.57% 11.97%
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http://h00shi.github.io/FILES/eosc550_pres/anim-with-u.gif


Control problem

u0
s1
u1

s2
u2

sMs0
uM-1
sM-1...

target

s0, target

U = [u0,u1, . . . ,uM−1]

S = [s1, s2, . . . , sM ]

Control Problem:

arg minU E (U; target, s0) = µ‖U‖2
2 + (sM − target)2
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Gradient of control objective, ∇UE

Similar backpropagation problem as deep neural networks:
I I + ∂s1C2

. . .

I I + ∂sjCj+1

. . .

I




∂s1sM

...
∂sj sM

...
∂sM sM

 =


0
...
0
...
I


∂uj sM = ∂sj+1sM

(
∂ujCj+1 + I

)
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Control Results

Easier pendulum:

n_links = 3;

M = [1 1 1];

L = [1 1 1];

LG = [1, 1, 1];

g = 10;

I = [0,0,0];

c = [1, 1, 1];

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

More complicated physics:

n_links = 3;

M = [1 1.5 2];

L = [1 1.5 2];

LG = L ./ 2.;

g = 10;

I = 1/12 .* M .* L .* L;

c = [1, 1, 1];
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http://h00shi.github.io/FILES/eosc550_pres/control-simple.gif
http://h00shi.github.io/FILES/eosc550_pres/control-hard.gif

