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1 Introduction

The relatively low cost of physical simulations has attracted much attention over the past decades. Depending
on the application of interest, solution methods to such problems can be considerably di�erent. In the �eld
of computer animation, the usual goal is to obtain visually plausible results in a short amount of time, while
engineering communities might be more interested in accuracy at the cost of solution speed.

Machine learning has been a part of many recent contributions in the �eld of physically based animation. For
example, Ladicky et al. [1] developed a random forest based regression framework for free surface �uid simulation
and solid interactions. On a set of test cases, they showed a considerable speed up over alternative simulation
methods. On a di�erent front, Holden et al. [2] encoded the physics of a game character moving on a terrain via
a specially parameterized neural network. They showed that their framework could fairly represent a gigabyte
of motion captured data in just a few megabytes. Work has also been done to train sophisticated controllers for
accurate physics based on neural networks and reinforcement learning, e.g., [3], which is beyond the scope of
this work.

Given the time limit of a course project, we have focused on the physics of a multi-linked pendulum in this work.
Following the work of Grzeszczuk et al. [4], we train neural networks that can predict the state of a pendulum
after a �xed time-step, ∆t, given its initial state and the values of control moments exerted on its links. We
then implement a control strategy that can solve for speci�c control variables over a �xed time range to obtain a
desired reduced physics motion.

2 Problem

A dynamical system is usually modelled as a system of di�erential equations,

ṡ = f (t, s,u), (1)

where s is the vector of state variables, t is time, u is vector of control variables, �̇ shows derivative with respect to
time, and the function f encodes the physics of the system. For a three-link pendulum as shown in �gure 1-a, the
physics of the system is dependent on the mass,Mi , moments of inertia, Ii , and the distance of the center of mass
from the top side, LGi , of the links. The angles of the consecutive links θi (�gure 1-b) and their rate of change
make up the state variables of the system, i.e., s = [θ1,θ2,θ3, θ̇1, θ̇2, θ̇3]. The control variables for this problem
are the moments τi exerted on the the adjacent links as shown in �gure 1-c, i.e., u = [τ1, τ2, τ3]. Other forces and
moments present in the system are gravity and friction, respectively, which are shown in �gure 1-d, and would
a�ect the function f . The derivation and the explicit form of the function f is presented in appendix A.1.
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Figure 1: A three-link pendulum: (a) Physical properties (b) degrees of freedom (c) control moments (d) gravity
forces and damping moments

We wish to obtain the state function, s(t), given an initial condition s0, and a control function u(t) 0 ≤ t ≤ ∆t.
This problem can of course can be solved by integrating equation (1) numerically, e.g., using a Runge-Kutta
method,

s = RK45(s0,u). (2)

Here, RK45 represents the adaptive Runge-Kutta-Fehlberg method o�ered in matlab’s ode45. Note that the
numerical integration method uses an inner time-step usually much smaller than ∆t.

Our �rst goal is to use a series of data generated by this numerically accurate method to train a neural network.
Grzeszczuk et al. [4] claim that a well trained neural network can be used as a faster alternative for creating
physically based animations of a variaty of systems. Next, we can use the trained neural network to solve a reverse
control problem in which one looks for control variables u(t) that produce a desired state function starget(t):

�nd u(t) such that starget = NN(s0,u).

3 Method

3.1 Network Architecture

We use and also compare a single layer and a deeper neural network architecture. Following the notation intro-
duced in the class, the single layer network evaluates the result of regression as

C = σ (YK + b)W + d,

where C is the output of the network, Y is the input, σ is the activation function, K and W are the weights, and
b and d are the bias vectors. For the deep network, the state at layer j + 1, Yj+1, is evaluated as

Yj+1 = Pj+1Yj + σ (YjKj + bj ),

where Pj is the identity matrix when dimensions of Yj and Yj+1 match and the zero matrix otherwise. The last
Yj values will then be the output of the network.

Although, we have not performed an extensive search of the network architecture and the hyper-parameters, we
have observed that 72 hidden units perform well for the single layer neural network. For the deep network, we
have used three inner layers with 20, 20, and 27 hidden units in the �rst, second, and third layer, respectively. In
both cases, the tanh activation function is used.
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Figure 2: Schematic of the control problem

3.2 Data

We set the feature vector, y, of the neural network to [s0,u0], where s0 is the initial state vector, and u0 is the
values of the control variables. The regression variable is then set to the change in the state vector after one time-
step, C = [s(t = ∆t) − s0]. The hope is that the change in the state vector would have a less complex behaviour
compared to its absolute value, and can be reproduced by a neural network more easily (an idea much similar to
the residual neural networks). Further, we supply a constant control of u(t) = u0 to the RK45 algorithm when
evaluating s(t = ∆t), as the neural network does not see the changes in u during the 0 ≤ t ≤ ∆t time interval.

We uniformly sample the training data in a pre-determined range, i.e., the angles, angular velocities, and mo-
ments are sampled from the intervals [−2π,2π], [−rω, rω], and [−rτ , rτ ], respectively. Here, rω and rτ are hyper-
parameters for the data generation process. In the remaining sections we have used ∆t = 0.05, rω = 2, and
rτ = 10.

3.3 Optimization

We experimented with a series of optimization methods for training our neural networks, including stochastic
gradient descent, Gauss-Newton’s method from the minFunc package [5], matlab’s fmin, and a non-linear con-
jugate gradient method from the minimize.m routine [6]. When using minFunc and matlab’s fmin, we used
the Hessian matrix-vector product of appendix A.2. The minimize.m routine had the best performance for our
dataset and was used to produce the results that will be presented in section 4.

3.4 Controller

The input to the control problem would be the number of time-steps M , the initial state s0, and the desired state
starget. As shown in �gure 2, the goal is to solve for the control variables ui at time steps 0 ≤ i ≤ M − 1, such
that applying these controls to a pendulum released from s0 would produce a motion that will end up as close to
starget as possible at time-level M . This problem can be cast into the minimization problem

argmin
U
E(U ;starget, s0) = µ‖U‖22 + (sM − starget)

2,

where U = [u0,u1, · · · ,uM−1] is the vector of all the controls to be solved for, and µ controls the amount of
regularization.

Minimizing the control objective of course requires the derivative of the objective function, which can be subse-
quently derived by the use of the chain rule. The resulting formula is almost identical to that of backpropagation.
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Table 1: Training and test errors for the neural networks
no control with control

Arch. Train error Test error Train error Test error
deep 4.13% 4.75% 7.23% 7.97%

single layer 7.35% 7.72% 10.57% 11.97%

First, the derivatives of the state at the last time level to those of the previous time levels, ∂sj sM , are solved for,

I I +∂s1C2
. . .
I I +∂sjCj+1

. . .
I





∂s1sM
...

∂sj sM
...

∂sM sM


=



0
...
0
...
I


,

where I is the identity matrix and the matrices ∂sjCj+1 are the derivatives of the output of the neural network
with respect to its input state vector. Then, the chain rule can be applied once more to �nd the derivatives of the
�nal state with respect to the controls at each time level,

∂uj sM = ∂sj+1
sM

(
∂ujCj+1 + I

)
,

where the matrices ∂sjCj+1 are the derivatives of the output of the neural network with respect to its input control
vector. Constructing the the derivative of the objective function, ∂ujE, would then be straightforward by having
the ∂uj sM values.

4 Results

4.1 Free Motion

We �rst try to train a neural network to predict the motion of the pendulum without any external control. The
following properties of the pendulum and the hyper-parameters for data generation are used.

n_links=3; M=[1,1,1]; L=[1,1,1]; LG=L; g=10; I=[0,0,0]; c=[1,1,1]; n_data=5000; r_omega=2pi; r_tau=2;

Which result in the convergence history shown in �gure 3 during the training process. Training and testing
relative L2 errors are also shown in table 1. We then release the pendulum from the initial condition s0 =
[2,0,0,0,0,0], and compare the transient solution obtained from the neural networks and the accurate physi-
cal solution, shown in �gure 4. The neural networks seem to be capturing the general trend of the solution, albeit
with small artifacts. Also, their solution does not seem to decay to zero, and converges to a periodic solution with
a small magnitude.

4.2 Forced Motion

We now train the neural networks with the control variables present. The pendulum properties and data gener-
ation parameters are this time chosen as:

n_links=3; M=[1,1,1]; L=[1,1,1]; LG=L; g=10; I=[0,0,0]; c=[1,1,1]; n=5000; r1=2pi; r2=2

The training and testing relative L2 errors are again shown in table 1. We now release the pendulum from the zero
initial conditions while exerting a moment vector of u = [5∗cos(t),0,sin(t)]. The solution of the neural networks
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Figure 3: Loss log for training without control variables

Figure 4: Plot of the solution when the pendulum is released from a non-zero initial state and no control is exerted

and the physical solution are shown in �gure 5. The accuracy of the neural network results seem lesser for this
case, especially for the second and third angles. Also, the single layer neural network seems to overestimate the
solution, while the deep neural network’s solution su�ers from undershoots.

4.3 Control Problem

In this section, we �rst train neural networks to predict the physics of a rather simple pendulum:

n_links = 3; M = [1 1 1]; L = [1 1 1]; LG = [1, 1, 1]; g = 10; I = [0,0,0]; c = [1, 1, 1].

And a more complicated pendulum:

n_links = 3; M = [1 1.5 2]; L = [1 1.5 2]; LG = L ./ 2.; g = 10; I = 1/12 .* M .* L .* L; c = [1, 1, 1].

Then we use the trained models to control the pendulums released from the position s = [0,0,0,0,0,0] to reach
the position s = [−π/2,−π/4,−π/4,0,0,0] in 150 time steps. We use a regularization coe�cient of 10−7.

Figure 5: Plot of the solution when the pendulum is released from a zero initial state and oscillatory control values
are exerted
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For the simple pendulum, the resulting values of angles and moments are shown in �gure 6. While both networks
successfully reach their target positions, the deep network seems to be producing control moments with less
abrupt changes. In other aspects, both architectures seem to be producing similar results. Snapshots of the
resulting animation are depicted in �gure 7.

For the complicated pendulum, the resulting values of angles and moments are shown in �gure 8. None of the
architectures can reach the target state in this case. The deep network has a smoother motion, yet more abrupt
changes in the moment values. Snapshots of the resulting animation are depicted in �gure 9.

5 Conclusion

In this project, we trained a deep and a single layer neural network to encode the physics of a three-linked
pendulum. We then used the trained networks for controlling the motion of the system. While we were successful
in controlling the motion of a simple pendulum, a complicated pendulum with non-uniform properties proved to
be a challenge.
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A Appendices

A.1 Pendulum Governing Equations

There are di�erent ways to obtain the equations of the motion for a pendulum. In this work, we have used the
Lagrange equations. The resulting equations would be:

Mθ̈ = f (θ̇,θ),

where M and f are
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Figure 6: Solution and control moments for the simple pendulum (red: single layer, blue: deep)
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Figure 7: Snapshots of the produced animation for the simple pendulum
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Figure 8: Solution and control moments for the complex pendulum (red: single layer, blue: deep)
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Figure 9: Snapshots of the produced animation for the complex pendulum
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M(1,1)= m1*LG1*LG1 + (m2+m3)*l1*l1 + I1 + I2 + I3;
M(1,2)= (m2*l1*LG2 + m3*l1*l2)*cos(theta1-theta2) + I2 + I3;
M(1,3)= (m3*l1*LG3)*cos(theta1-theta3) + I3;
%
M(2,1)= (m2*l1*LG2 + m3*l1*l2)*cos(theta2-theta1) + I2 + I3;
M(2,2)= m2*LG2*LG2 + m3*l2*l2 + I2 + I3;
M(2,3)= m3*l2*LG3*cos(theta2-theta3) + I3;
%
M(3,1)= m3*l1*LG3*cos(theta3-theta1) + I3;
M(3,2)= m3*l2*LG3*cos(theta2-theta3) + I3;
M(3,3)= m3*LG3*LG3 + I3;

f(1)= thetadot2*thetadot2 * sin(p2-p1) * (m2*l1*lt2 + m3*l1*l2) + thetadot3*thetadot3 * sin(p3-p1) * (m3*l1*lt3);
f(2)= thetadot1*thetadot1 * sin(p1-p2) * (m2*l1*lt2 + m3*l1*l2) + thetadot3*thetadot3 * sin(p3-p2) * (m3*l2*lt3);
f(3)= thetadot1*thetadot1 * sin(p1-p3) * (m3*l1*lt3 ) + thetadot2*thetadot2 * sin(p2-p3) * (m3*l2*lt3);
%
f(1)= f(1) - g*(m1*lt1+m2*l1+m3*l1)*sin(p1);
f(2)= f(2) - g*(m2*lt2+m3*l2)*sin(p2);
f(3)= f(3) - g*(m3*lt3)*sin(p3);
%
f(1) = f(1) + tau1 - c1*thetadot1;
f(2) = f(2) + tau2 - c2*thetadot2;
f(3) = f(3) + tau3 - c3*thetadot3;

A.2 Hessian Matrix-Vector Products for a Single Layer Neural Network

Introducing the notations Z = σ (YK+b), S = ZW +d, and E = 1
2‖C−S‖

2
2, while neglecting the second derivative

of the activation function, we can derive the following formulas for the Hessian matrix-vector products including
derivatives w.r.t K and W :

(∂2
KKE)δK = (∂KZ)T (∂2

ZZE)(∂KZ)δK

(∂2
KWE)δW = (∂KZ)T

(
(∂2
ZZE)(ZδW )W T + (S −C)δW T

)
(∂2
WKE)δK = ZT ((∂KZ)T δK)W + (∂KZ)(δK)T (S −C)

(∂2
WWE)δW = ZTZδW .

Derivatives w.r.t b and d can also be derived in a similar manner.
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