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Abstract

High-order accurate numerical discretization methods are attractive for their potential to signi�cantly
reduce the computational costs compared to the traditional second-order methods. Among the various
unstructured higher-order discretization schemes, the k-exact reconstruction �nite volume method is
of interest for its straightforward mathematical formulation, and its compatibility with the current
lower-order industrial solvers. However, current three-dimensional �nite volume solvers are limited
to the solution of inviscid and laminar viscous �ow problems. Since three-dimensional turbulent �ows
appear in many industrial applications, the current thesis takes the �rst step towards the development
of a three-dimensional higher-order �nite volume solver for the solution of both inviscid and viscous
turbulent steady-state �ow problems.

The k-exact �nite volume formulation of the governing equations is rederived in a dimension-independent
manner, where the negative Spalart-Allmaras turbulence model is employed. This one-equation model
is reasonably accurate for many �ow conditions, and its simplicity makes it a good starting point for
the development of numerical algorithms. Then, the three-dimensional mesh preprocessing steps for
a �nite volume simulation are presented, including higher-order accurate numerical quadrature, and
capturing the boundary curvature in highly anisotropic meshes. Also, the issues of k-exact reconstruc-
tion in handling highly anisotropic meshes are reviewed and addressed.

Since three-dimensional problems can require much more memory than their two-dimensional coun-
terparts, solution methods that work in two dimensions might not be feasible in three dimensions
anymore. As an attempt to overcome this issue, a practical and parallel scalable method for the solu-
tion of the discretized system of nonlinear equations is presented.

Finally, the solution of four three-dimensional test problems are studied: Poisson’s equation in a cubic
domain, inviscid �ow over a sphere, turbulent �ow over a �at plate, and turbulent �ow over an ex-
truded NACA 0012 airfoil. The solution is veri�ed, and the resource consumption of the �ow solver
is measured. The results demonstrate the bene�t and practicality of using higher-order methods for
obtaining a certain level of accuracy.
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Lay Summary

The �nite volume method is a popular numerical scheme for the solution of aerodynamic �ow prob-
lems. Although conventional �nite volume schemes are mostly second-order accurate, there has been
a growing interest in higher-order accurate numerical methods, since they can be considerably more
e�cient in terms of computational resources for achieving a certain level of accuracy.

Higher-order �nite volume methods have been successfully developed for a wide range of two-dimensional
�ow problems. Nevertheless, numerical methods that work in two dimensions might not be feasible
in three dimensions anymore, since three-dimensional problems can require much more memory than
their two-dimensional counterparts. The current thesis aims at identifying, and resolving such short-
comings to construct a working three-dimensional �nite volume solver with an emphasis on turbulent
�ows. Subsequently, three-dimensional benchmark �ow problems are solved to verify and assess the
performance of the developed numerical method.
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Chapter 1

Introduction

1.1 Motivation

The advent of computational �uid dynamics (CFD) has considerably improved the design and manu-
facturing processes in many industries such as aerospace, turbomachinery, oil and gas, and bioengi-
neering. CFD �nds solutions to engineering problems by numerically solving the governing and/or
modeling partial di�erential equations (PDEs). CFD simulations o�er a cheap alternative to experi-
mental setups in many, though not all, situations while not su�ering from the limitation of analytical
methods in handling complex geometries. Nevertheless, CFD methods are not always considered a
rival to the other methods of analysis. Computational methods are sometimes used for tuning param-
eters or selecting methods of measurement in experimental setups. For example, Yoo et al. [80] employ
CFD simulations to estimate the right scale for building a nuclear fuel cask experimental model. Con-
versely, many PDEs that are solved in CFD are derived from experimental data, such as the turbulence
model of Spalart and Allmaras [68].

A majority of CFD methods are categorized as mesh-based discretization schemes. A mesh-based
discretization scheme seeks to approximate the solution to a PDE Lu(x) = 0 inside a domain Ω ⊂
RNdim , where L is a di�erential operator, u(x) ∈ RNunk is the unknown exact solution, and no time
dependence has been assumed for simplicity. In the �rst step, the domain is subdivided (meshed)
into a set of non-overlapping sub-volumes Th, followed by de�ning a discrete function in the form
of uh(x;Uh). Here, the term discrete means that this function will be uniquely de�ned if a �nite
number of degrees of freedom, Uh ∈ RNDOF , are all speci�ed. Furthermore, the subscript h, which is
the representative length scale of the subdivision, emphasizes the dependency of the solution on the
mesh. Finally, the goal is to �nd Uh, such that uh closely approximates the exact solution u as the
mesh gets smaller. The rigorous de�nition of “to closely approximate” is that the discretization error,
eh = uh −u, must have an asymptotic behavior such that: ‖eh‖ =O(hp). The discretization scheme is
then said to be pth-order accurate.
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Although conventional discretization schemes for aerodynamical �ows are only second-order accu-
rate, there has been a growing interest in higher-order accurate methods. Higher-order methods can
be considerably more e�cient compared to second-order methods in achieving accurate solutions,
since the former results in more accurate results on coarser meshes [21, 48]. Even small improvements
in accuracy can be of considerable importance. For example, Vassberg et al. [74] show that for a long-
range jet-aircraft that delivers a payload between distant city pairs, a 1% error in predicting the drag
can reduce the carried payload by 7%. With the airlines operating on pro�t margins of only a few
percent, such a loss can make the service completely unpro�table.

Regarding the adoption of higher-order methods, there has always been the legitimate concern of
modeling errors, i.e., the discrepancies between the exact solution of the governing equations and the
true physical quantities. For a problem where the modeling errors are dominant, only a limited level
of reduction in the discretization errors is of interest. Even in such a case, preliminary results have
shown that an hp-adaptive strategy can achieve a desired level of accuracy faster than conventional
second-order methods [33, 38]. An hp-adaptive method increases the local order of accuracy p and
decreases the mesh size h at only certain regions of the domain. In the context of design and opti-
mization, thousands of simulations might be required for optimizing a subject geometry [42]. Thus,
even a small runtime improvement for a single simulation can result in a considerable reduction of the
overall resource consumption. Moreover, modeling errors are not always the dominant mode. In re-
cent work by Mavriplis [45], where he studied the numerical solution of the �ow around a wing-body
con�guration from the AIAA drag prediction workshop (DPW), the dominant errors were found to be
those of discretization.

For structured meshes, highly-accurate �nite di�erence methods have long been developed [39, 75],
and are known to have superior properties in terms of computational cost and e�ciency [19]. Nonethe-
less, generation of structured meshes for complex geometries is a challenging task, and requires ex-
tensive amounts of human input. Therefore, grids for complex geometries are often obtained by the
fairly automatic and convenient alternative of unstructured mesh generation techniques.

For unstructured meshes, various approaches have been devised for achieving higher-order accuracy,
most notably: continuous [5] and discontinuous [29] Galerkin �nite element methods, the correction
procedure via reconstruction formulations of the discontinuous Galerkin and spectral volume meth-
ods [31], and �nite volume schemes [32]. (See the work of Andren et al. [8] for a detailed comparison
of numerical results). The use of �nite volume methods is partly motivated by their straightforward
mathematical formulation compared to the complex structure of the other mentioned methods. Fur-
thermore, most of the current industrial CFD codes are based on the �nite volume method. While
implementing other approaches would require the development of completely new commercial codes,
higher-order �nite volume methods can be integrated into the current industrial solvers. Finite volume
methods are also attractive because of the smaller number of degrees of freedom that they require for
the same mesh compared to �nite element methods.

In two dimensions, unstructured high-order �nite volume methods have been successfully applied

2



to a range of aerodynamic problems: the Euler equations [27, 46], laminar Navier-Stokes equations
[33, 40], and turbulent Reynolds Averaged Navier-Stokes (RANS) equations [32]. Although taking the
e�ects of turbulence into consideration is necessary for correctly capturing many aerodynamic �ows,
three-dimensional results are scarce and limited to the solution of Euler and laminar Navier-Stokes
equations [25, 40]. In the long run, the ANSLab team at UBC is interested in developing a three-
dimensional higher-order �nite volume solver for the solution of both inviscid and viscous turbulent
steady-state �ow problems, while providing approximate error bounds on target unknowns such as
lift and drag. The �rst step towards this goal will be taken in this thesis: solution of well-known
three-dimensional benchmark �ow problems.

1.2 Objectives

The ultimate goal of this thesis is the generalization of our current 2-D �ow solver, ANSLib, for the
solution of 3-D benchmark problems involving inviscid and viscous turbulent �ows. The pursuit of
this goal is divided into the following steps:

• Derive the �nite volume formulation of the governing equations in a dimension-independent
manner. Of course, the choice of the turbulence model in this part considerably a�ects the so-
lution. In this thesis, the objective is to employ the negative Spalart-Allmaras turbulence model
[6]. This one-equation model is reasonably accurate for many �ow conditions, and its simplicity
makes it a good starting point for the development of numerical algorithms. The negative ver-
sion of this model is chosen because it permits negative values for the model working variable,
which can be present when higher-order methods are employed.

• Identify and undertake the preprocessing steps involved in handling three-dimensional grids
required for turbulent simulations.

• Design a practical and parallel scalable method for the solution of the discretized system of
nonlinear equations. Since three-dimensional problems can require much more memory than
their two-dimensional counterparts, solution methods that work in two dimensions might not
be feasible in three dimensions anymore.

• Verify the performance of the solver, and the accuracy of the solutions obtained.

1.3 Thesis Outline

This thesis is organized in the following manner:

Chapter 2 provides an overview of our in-house �ow solver ANSLib, in which the algorithms of this
thesis have been implemented. The key concepts of the solver, i.e., k-exact reconstruction and �-
nite volume discretization are discussed in detail. Also, governing and modeling equations of interest
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are introduced. Finally, the �ux functions and the boundary conditions are revisited in a dimension-
independent notation.

Chapter 3 discusses the preprocessing steps of three-dimensional meshes for a �nite volume simu-
lation. First, numerical integration is addressed, where Gauss quadrature rules are employed in con-
junction with reference element mappings to construct quadrature information for the control volumes
and their faces. Then, the capturing of boundary curvature in highly anisotropic meshes is addressed,
which is a necessity for higher-order solution methods. Finally, the issues of k-exact reconstruction in
handling highly anisotropic meshes are reviewed and addressed.

In Chapter 4, the solution of the discretized system of nonlinear equations is discussed. First, the
pseudo transient continuation method is revisited, which transforms the solution of the nonlinear
system of equations into the solution of a series of linear systems. Then, a memory lean, yet e�ec-
tive, method for the solution of the corresponding linear systems is proposed, and compared to the
previously available linear solution methods in ANSLib.

Chapter 5 presents the solution of four three-dimensional test problems. To test the correct imple-
mentation of the mesh preprocessing algorithms, Poisson’s equation is solved in a simple geometry,
where the discretization error is explicitly evaluated and its asymptotic behavior is veri�ed. Then, the
subsonic inviscid �ow around a sphere is studied, where the solution accuracy is veri�ed by measuring
the deviation of the entropy from the in�ow conditions throughout the domain. Finally, the problems
of viscous turbulent �ow over a �at plate and an extruded NACA 0012 airfoil are solved, and the solu-
tions are veri�ed against the reference data provided in the NASA turbulence modeling (TMR) website
[60].

In the end, Chapter 6 summarizes the research of the thesis, provides conclusions, and proposes pos-
sible future work.

In addition, the command-line options that were provided to the ANSLib executable for running each
test case are provided in Appendix A. A sample script for running a parallel job on the WestGrid Grex
cluster [3] is also given in Appendix B, as the three-dimensional cases of this thesis were all run on
this cluster.
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Chapter 2

Background

This chapter presents the fundamentals upon which this research has been founded. As the algorithms
involved in this thesis have been implemented as parts of ANSLib, it is essential to present the working
mechanism of this solver. Thus, this chapter starts with a description of the �nite volume method and
k-exact reconstruction, which are the numerical solution schemes in ANSLib, and then moves on to
the model equations of interest.

2.1 The Finite Volume Method

The �nite volume method is applied to equations which can be expressed in the conservative form:

∂u
∂t

+∇ · (F (u)−Q(u,∇u)) = S(u,∇u), (2.1)

where F ∈ RNunk×Ndim is the inviscid �ux matrix, Q ∈ RNunk×Ndim is the viscous �ux matrix, and S ∈
RNunk is the source term vector. In this method, the degrees of freedom are the same as the average
value of the discrete solution inside every control volume. This fundamental constraint is known as
the conservation of the mean, and can be written as:

1
Ωτ

∫
τ
uh(x)dΩ =Uh,τ τ ∈ Th, (2.2)

where Ωτ and Uh,τ ∈ RNunk represent the volume and local DOF vector for control volume τ , respec-
tively. Establishing a relation between the discrete solution uh, and the degrees of freedom Uh, when
satisfying the conservation of the mean constraint, is called reconstruction in the �nite volume frame-
work. To accomplish this, ANSLib uses the k-exact reconstruction scheme, which will be introduced
in Section 2.2.

The �nite volume method uses the divergence theorem to discretize Equation (2.1). Consider a control
volume τ ∈ Th as depicted in Figure 2.1. Integrating Equation (2.1) inside the control volume, and using
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n

(uh
+,∇uh

+)

(uh
-,∇uh

-)

(uh,∇uh)

∂τ\∂Ω

∂τ∩∂Ω

Figure 2.1: Illustration of terminology in �nite volume discretization

the divergence theorem gives:

dUh,τ
dt

+
1
Ωτ

∫
∂τ\∂Ω

(
F I (u

+
h ,u
−
h )−QI (u

+
h ,∇u

+
h ,u
−
h ,∇u

−
h )
)
dS

+
1
Ωτ

∫
∂τ∩∂Ω

(F B(uh,B)−QB(uh,∇uh,B))dS −
1
Ωτ

∫
τ
S(uh,∇uh)dΩ = 0, (2.3)

where B represents the boundary conditions, in the case where the control volume has faces lying
on the boundary. Although the discrete solution uh and its gradient ∇uh are continuous inside every
control volume, they can be discontinuous on the control volume boundaries ∂τ . These discontinuous
values are shown using the (.)+ and (.)− notations. F I andQI represent the interior numerical �ux
functions, while F B and QB represent their boundary counterparts. Numerical �ux functions are
designed to mimic the product of the original �ux matrices and the normal vector while taking into
account the discontinuity of the discrete solution and the boundary conditions. The �ux functions
used in this thesis will be introduced in Section 2.4.

Looking back at Equation (2.3), the following system of ODEs for control volume averages can be
derived:

dUh
dt

+R(Uh) = 0, (2.4)

which can be solved with a variety of time advance schemes when a time-accurate solution is of inter-
est. Butcher [15] presents a detailed study of these methods. Although only the steady state solution is
of interest in this thesis, the unsteady terms can be used to improve the robustness of the solver with
respect to the initial solution guess. This method, known as pseudo transient continuation (PTC) [35],
will be introduced in Chapter 4.

2.2 K-exact Reconstruction

The design of reconstruction schemes in the �nite volume framework started with Van Leer’s MUSCL
scheme [72, 73]. His scheme took advantage of the uniform pattern of control volumes in structured
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meshes and was not directly applicable to unstructured grids. Later on, the k-exact reconstruction
[12] and the WENO/ENO [66] family of methods were designed, and did not su�er from MUSCL’s
shortcoming in handling unstructured meshes. The latter, however, has poor steady state conver-
gence properties [59]. Targeted to solve aerodynamic steady state problems, ANSLib uses the k-exact
reconstruction method in its �nite volume formulation.

Suppose a polynomial function of order smaller or equal to k, v(x), is integrated in every control vol-
ume to �nd the control volume averages Vh. If these average values are fed to a k-exact reconstruction
scheme to construct the function vh(x), the identity vh(x) = v(x) must hold, which is where the name
k-exact comes from. A k-exact scheme is also called (k + 1)th-order accurate, since it results in a
nominal discretization error of order O(h(k+1)) [13]. For simplicity, let us consider this method when
there is only one unknown variable, i.e., the vector u reduces to a scalar u. Generalization to multiple
unknown variables will then be straightforward. In this case, the solution in every control volume is
de�ned as the superposition of a set of basis functions in the form:

uh(x;Uh,B)|x∈τ = uh,τ (x;Uh,B) =
Nrec∑
i=1

aiτ (Uh,B)φiτ (x) τ ∈ Th. (2.5)

Where φiτ (x) and aiτ represent the ith basis function and reconstruction coe�cient for control vol-
ume τ , respectively. Most commonly, the basis functions will be chosen as monomials in Cartesian
coordinates with origin at the reference point of each control volume:

{
φiτ (x)

∣∣∣ i = 1 . . .Nrec
}
=

{ 1
a!b!c!

(x1 − xτ1)a(x2 − xτ2)b(x3 − xτ3)c
∣∣∣∣∣ a+ b+ c ≤ k } , (2.6)

where xτ1, xτ2, and xτ3 are the coordinates of the control volume’s reference location, which is usually
chosen as the centroid of volume. This particular choice of basis functions has the advantage that the
discrete solution uh will resemble the Taylor expansion of the exact solution u, which is particularly
useful in theoretical analysis [54]. However, there are situations, e.g., highly anisotropic meshes, in
which it would be more bene�cial to use other basis functions [32]. Such a case will be introduced in
Chapter 3.

The discrete solution must satisfy the conservation of the mean constraint, given in Equation (2.2).
Moreover, for every control volume τ , a speci�c set of its neighbors are chosen as its reconstruction
stencil Stencil(τ). The k-exact reconstruction requires uh,τ to predict the average values of the mem-
bers of Stencil(τ) closely. Furthermore, if the control volume is located on the boundary (∂τ∩∂Ω , ∅),
enforcing uh,τ or ∇uh,τ ·n to have certain values at boundary quadrature points, can improve conver-
gence in the presence of certain boundary conditions [54]. Thus, the reconstruction coe�cients can
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be found by solving the following constrained minimization problem:

minimize
a1τ ...a

Nrec
τ

∑
σ∈Stencil(τ)

(
1
Ωσ

∫
σ
uh,τ (x)dΩ−Uh,σ

)2
+

∑
q∈BdryQuad(τ)

(
B(uh,τ (q),∇uh,τ (q),B)

)2
subject to 1

Ωτ

∫
τ
uh(x)dΩ =Uh,τ ,

(2.7)

where BdryQuad(τ) is the set of boundary quadrature points for control volume τ , and B is the bound-
ary condition constraint function. The number of control volumes in Stencil(τ) must be greater than
the number of reconstruction coe�cientsNrec, so that the minimization problem does not become un-
determined. To construct Stencil(τ), all the neighbors at a given topological distance from τ are added
to the stencil until the number of stencil members gets bigger than a given value MinNeigh(k). For a
well behaved problem on a mesh with high regularity, choosing MinNeigh(k) = Nrec can result in an
acceptable solution. However, a value of MinNeigh(k) = 1.5Nrec is chosen to cope with mesh irreg-
ularities and oscillatory solution behavior. Figure 2.2 shows a control volume and its reconstruction
stencil for di�erent k values.

By introducing the integral of each basis function of every control volume inside itself and its stencil
members:

I iτσ =
∫
σ
φiτ (x)dΩ σ ∈ Stencil(τ)∪ { τ } , (2.8)

the constrained minimization problem in Equations (2.7), can be written in a compact matrix form:
I1ττ . . . I

Nrec
ττ

I1τσ1 . . . I
Nrec
τσ1

...
. . .

...

I1τσNS(τ)
. . . I

Nrec
τσNS(τ)



a1τ
...

a
Nrec
τ

 =

Uh,τ
Uh,σ1
...

Uh,σNS(τ)


, (2.9)

where the boundary constraints have been neglected for the sake of simplicity. The symbols σ1, σ2,
. . . , σNS(τ) represent the members of Stencil(τ). The �rst row of the matrix is a constraint and must
be exactly satis�ed, while the other rows correspond to equations that have to be minimized in a least
squares fashion. As the left hand side matrix in Equation (2.9) is only dependent on geometric terms,
and does not include the average solution values Uh, the solution can be written as:


a1τ
...

a
Nrec
τ

 = A†τ

Uh,τ
Uh,σ1
...

Uh,σNS(τ)


, (2.10)

where the matrix A†τ is the pseudo-inverse of the left hand side matrix. A change of variables inspired
by the Gaussian Elimination method is used to convert Equation (2.9) into an unconstrained optimiza-
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τ

Figure 2.2: Reconstruction stencils for a control volume τ : A set of values MinNeigh(1) = 3,
MinNeigh(2) = 9, and MinNeigh(3) = 18 have been used, which have resulted in recon-
struction stencils { blue }, { blue, magenta }, and { blue, magenta, cyan } for the 1-exact, 2-
exact, and 3-exact reconstruction schemes, respectively.

tion problem [54]. Then the unconstrained problem is solved by singular value decomposition (SVD)
[24] to yield the pseudo-inverse matrix. This process has to be evaluated for every control volume, only
as a preprocessing step, which prevents it from becoming a bottleneck in our computations.

In the case of equations with discontinuous solutions, shock capturing numerical schemes such as
slope limiters [76] or arti�cial di�usion [69] are required in conjunction with the k-exact reconstruc-
tion method to ensure convergence to the correct solution. For more recent implementation of these
methods in conjunction with higher-order schemes see [11, 46, 53]. In this thesis, however, the em-
phasis is on model problems without discontinuities. Thus, no shock capturing methods have been
used.

2.3 Studied Equations

This section introduces the equations of interest. Namely, Poisson’s, Euler, laminar and Reynolds
averaged Navier-Stokes, and the Spalart-Allmaras turbulence closure equations.

2.3.1 Poisson’s Equation

The Poisson’s equation is a simple yet powerful tool to verify the correct implementation of many
algorithms in ANSLib. This equation has a scalar unknown u and a solution-independent source term
f in the form of:

−∇ · (∇u) = f (x). (2.11)
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To simplify the notation, we consider the gradient operator on a scalar function as a row vector. For
example, ∇u = [ ∂u∂x1 ,

∂u
∂x2
, ∂u∂x3

]. Thus the Poisson equation can be recovered from the steady state form
of the conservative Equation (2.1) by replacing F = ∇u, Q = 0, and S = f (x).

2.3.2 Navier-Stokes Equations

The Navier-Stokes and the continuity equations are widely used for the simulation of �uid �ow. In the
compressible form of these equations, the vector of unknowns is u = [ρ,ρvT ,E]T , where ρ is the �uid
density, v = [v1,v2,v3]T is the velocity vector, and E is the total energy. When combined with the
ideal gas internal energy and state equations, the nondimensionalized Navier-Stokes equations can be
identi�ed by a zero source term vector and �ux matrices:

F =


ρvT

ρvvT + P I

(E + P )vT

 Q =


0

Ma
Re τ

(E + P )τv+ 1
γ−1

(
µ
Pr

)
∇T

 , (2.12)

where Ma, Re, Pr, and γ represent the Mach number, the Reynolds number, the Prandtl number,
and the speci�c heat ratio, respectively. T is the temperature, (.)T denotes matrix transpose, P is
the pressure, τ is the viscous stress matrix, µ is the dimensionless �uid viscosity, and I is the identity
matrix. Since the emphasis is on air as the working �uid, the valuesγ = 1.4, Pr = 0.72 are used, andµ is
found from Sutherland’s law. The pressure is related to the dependent variables via the formula:

P = (γ − 1)
(
E − 1

2
ρ(v · v)

)
. (2.13)

Similarly, temperature is related to pressure and density in the form:

T =
γP

ρ
. (2.14)

For Newtonian compressible �uids, the viscous stress tensor is related to the velocity as:

τ = 2µ
(1
2

(
∇v+ (∇v)T

)
− 1
3
trace(∇v)I

)
, (2.15)

where ∇v represents the gradient of the velocity vector, such that (∇v)ij = ∂vi
∂xj

.

If the viscous terms are neglected, i.e., either Q, or equivalently µ is set to zero, the Euler equations
would be recovered. The Euler equations are used in this work to asses the capability of the solver in
handling reasonably big three-dimensional problems.
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2.3.3 Extension to Turbulent Flows

In this thesis, the Reynolds averaged Navier Stokes (RANS) equations are used for modeling turbulent
�ows, and are coupled with the negative Spalart-Allmaras (negative S-A) turbulence model [6]. This
model includes a number of dimensionless empirical constants, listed in Table 2.1, and a few empirical
functions, shown by the symbol f and an appropriate subscript, which will be introduced shortly. The
nondimensionalized �ux matrices for the RANS + negative S-A equations are de�ned as:

F =


ρvT

ρvvT + P I

(E + P )vT

ν̃ρvT

 Q =


0

Ma
Re τ

(E + P )τv+ 1
γ−1

(
µ
Pr +

µT
PrT

)
∇T

− Ma
Reσ (µ+µT )∇ν̃

 , (2.16)

where ν̃ is the negative S-A working variable, µT is the turbulent viscosity, and PrT is the turbulent
Prandtl number, which has a value of 0.9 for air. The source term of the nondimensionalized RANS +
negative S-A is de�ned as:

S =


0

0

0

Diff +ρ(Prod−Dest+Trip)

 , (2.17)

where Diff , Prod, Dest, and Trip represent di�usion, production, destruction, and trip terms, respec-
tively. The viscous stress tensor can be found via the modi�ed equation:

τ = 2(µ+µT )
(1
2

(
∇v+ (∇v)T

)
− 1
3
trace(∇v)I

)
. (2.18)

The turbulent viscosity is expressed as:

µT =

µ
′fv1ρν̃ ν̃ ≥ 0

0 ν̃ < 0
, (2.19)

where µ′ is the reference value that is used to nondimensionalize the turbulence working variable.
In this work, we have used µ′ = 1000 to make ν̃ comparable in size to the other nondimensional-
ized variables, which enhances the performance of the numerical solver [17]. The production term in
Equation (2.17) is de�ned as:

Prod =

cb1(1− ft2)S̃ν̃ ν̃ ≥ 0

cb1(1− ct3)S ν̃ < 0
. (2.20)

The destruction term is found from the equation:

Dest =


µ′Ma
Re

(
cw1fw −

cb1
κ2 ft2

)(
ν̃
d

)2
ν̃ ≥ 0

−µ
′Ma
Re cw1

(
ν̃
d

)2
ν̃ < 0

, (2.21)
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Table 2.1: Dimensionless empirical parameters used in the negative S-A model

Name Value Name Value Name Value
cb1 0.1355 cb2 0.622 cw1

cb1
κ2 +

1+cb2
σ

cw2 0.3 cw3 2.0 ct3 1.2
ct4 0.5 cn1 16 cv1 7.1
cv2 0.7 cv3 0.9 κ 0.41
σ 0.66

where d is the minimum distance to wall boundaries. The di�usion term is given as:

Diff =
Ma
Reσ

(
µ′cb2ρ∇ν̃ · ∇ν̃ −

µ

ρ
(1 +χfn)∇ρ · ∇ν̃

)
, (2.22)

where χ is:

χ =
µ′ρν̃

µ
. (2.23)

The trip term in Equation (2.17) models �ows that include the laminar to turbulent transition phe-
nomenon. Since the emphasis in this thesis is on fully turbulent �ows, the trip term is neglected and
set to zero. The vorticity S , and its modi�ed forms, S̃ , S̄ , are found from the equations:

S =

√√√
1
2

∑
i

∑
j

(
∂vi
∂xj
−
∂vj
∂xi

)2
S̄ =

µ′Ma
Re

ν̃

κ2d2
fv2

S̃ =

S + S̄ S̄ ≥ −cv2S

S + c2v2S+cv3S̄
(cv3−2cv2)S−S̄

S̄ < −cv2S
.

(2.24)

The empirical function fn ensures the positivity of µT , and is de�ned as:

fn =

1 ν̃ ≥ 0
cn1+χ3

cn1−χ3 ν̃ < 0
. (2.25)

The functions fv1, fv2, fv3 are given as:

fv1 =
χ3

χ3 + c3v1
fv2 = 1− χ

1+χfv1
ft2 = ct3 exp(−ct4χ2), (2.26)

and the function fw is given as:

r =
µ′Ma
Re

ν̃

S̃κ2d2
g = r + cw2(r

6 − r) fw = g
(
1+ c6w3
g6 + c6w3

)
. (2.27)
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Having de�ned the equations of interest, let us now introduce the numerical �ux functions.

2.4 Numerical Flux Functions

As discussed earlier, the �nite volume method relies on �ux functions that not only take into account
the discontinuity of the solution along internal faces, but also correctly capture the in�uence of the
boundary conditions. In this section, we will introduce the numerical �ux functions used in ANSLib for
the solution of the more general RANS + negative S-A equations. Flux functions for the simpler Euler
and Poisson equations can simply be derived by omitting the relevant terms from the more general
case.

2.4.1 Inviscid Flux

The inviscid �uxes represent propagation of information via �nite speed waves, and are convective
in nature. Most numerical �ux functions seek a solution to the approximate one-dimensional equa-
tion:

∂u
∂t

+
∂F (u)n
∂s

= 0, (2.28)

and then use this solution to �nd the numerical �ux. In Equation (2.28), F is the inviscid �ux matrix,
n is the face normal vector, and s is the unit of length. The arti�cial viscosity method [79] adds extra
nonlinear dissipative terms to Equation (2.28) to give it an elliptic nature. On the other hand, the Go-
dunov method [23] is based on the exact solution of Equation (2.28), with piecewise constant initial
conditions corresponding to the left and right states (the Riemann Problem). Due to the expensive cost
of exactly solving the Riemann problem, many researchers have developed approximate solutions such
as the Rusanov [61], HLL family [28, 70], and Roe [58] methods. In this thesis, a computationally e�-
cient formulation [57] of the approximate Riemann solver of Roe has been used due to its e�ectiveness
and simplicity. This formulation has the form of

F I (u
+
h ,u
−
h ) =

1
2

(
F (u+

h )n+ F (u−h )n−D(u+
h ,u
−
h )
)
, (2.29)

where D represents the di�usion vector given by the formula:

D(u+
h ,u
−
h ) =


|λ̃2|∆ρ+ δ1

|λ̃2|∆(ρv) + δ1ṽ+ δ2n
|λ̃2|∆E + δ1H̃ + δ2ṽ ·n
|λ̃2|∆(ρν̃) + δ1 ˜̃ν

 . (2.30)
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Here, ∆(.) = (.)+h −(.)
−
h , and the variables λ1, . . . ,λ6 represent the six eigenvalues of the Jacobian matrix

∂F (u)n
∂u , expressed as:

λ1 = v ·n− c λ2 = . . . = λ5 = v ·n λ6 = v ·n+ c. (2.31)

The variable c is the speed of sound, de�ned as:

c =

√
γP

ρ
. (2.32)

In Equation (2.30) the symbol (̃.) represents the Roe average state, evaluated from the equation:

(̃.) =


√
(.)−h (.)

+
h (.) = ρ

√
ρ−h (.)

−
h+
√
ρ+h (.)

+
h√

ρ−h+
√
ρ+h

(.) = v, ν̃,H
, (2.33)

where H = P+E
ρ is the enthalpy. Note that ṽ and ˜̃ν are the velocity and the S-A working variable at

the Roe average state, respectively. The variables δ1 and δ2 in Equation (2.30) are given as:

δ1 =
∆P

c̃2

(
−|λ̃2|+

|λ̃1|+ |λ̃6|
2

)
+
ρ̃

2c̃2
∆(v ·n)

(
|λ̃6| − |λ̃1|

)
δ2 =

∆P

2c̃2
(
|λ̃6| − |λ̃1|

)
+ ρ̃∆(v ·n)

(
−|λ̃2|+

|λ̃1|+ |λ̃6|
2

)
.

(2.34)

ANSLib evaluates the the inviscid boundary �uxes using the method of characteristics [30]. For wall
and symmetry boundary conditions, the mass �ux must be zero. Thus, the inviscid �ux is evaluated
as:

F B(uh,B) = [0, Phn
T ,0]T B is symmetry or wall. (2.35)

On far�eld boundaries, however, the boundary �ux formulation changes based on the sign of the
normal velocity, v · n. In this work, we consider subsonic in�ow and out�ow boundary conditions
which are identi�ed by the inequalities 0 ≤ v · n < c, and −c < v · n ≤ 0, respectively. In either case,
the boundary �ux is evaluated in terms of an intermediate state, u∗h, de�ned as a function of both the
boundary conditions and the discrete solution:

F B(uh,B) = F (u∗h)n u∗h = (uh,B) B is in�ow or out�ow. (2.36)

For subsonic in�ow, �ve values of far�eld turbulence working variable ν̃far, total temperature Tt , total
pressure Pt , side slip angle ψ, and angle of attack α must be speci�ed. Subsequently, the intermediate
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state u∗h can be found as:

P ∗h = Ph T ∗h = Tt

(
P ∗h
Pt

) γ−1
γ

ρ∗h = γ
P ∗h
T ∗h

ν̃∗h = ν̃far

‖v∗h‖2 =

√
2

γ − 1

(
Tt
T ∗h
− 1

)
v∗h1 = ‖v

∗
h‖2 cosα cosψ v∗h2 = ‖v

∗
h‖2 sinα cosψ v∗h3 = ‖v

∗
h‖2 sinψ.

(2.37)

For subsonic out�ow, only the back-pressure value Pb must be speci�ed. The intermediate state will
then be de�ned as:

ρ∗h = ρh v∗h = vh P ∗h = Pb ν̃∗h = ν̃h. (2.38)

In this thesis, the same values are chosen for ν̃far, Tt , Pt , and Pb as the work of Jalali and Ollivier-Gooch
[32]:

ν̃far =
3
µ′

Tt = 1+
γ − 1
2

Ma2 Pt =
1
γ
T

γ
γ−1
t Pb =

1
γ
. (2.39)

2.4.2 Viscous Flux

The viscous �ux functions are evaluated in a di�erent manner compared to their inviscid counterparts.
When evaluating internal �ux values, an intermediate state u∗h is used in the form:

QI (u
+
h ,∇u

+
h ,u
−
h ,∇u

−
h ) =Q(u∗h,∇u

∗
h)n. (2.40)

Finding the intermediate solution as the numerical average of the left and right states,

u∗h =
1
2

(
u+
h +u−h

)
, (2.41)

results in a su�ciently accurate solution [51]. When evaluating the intermediate solution gradient,
however, simple averaging may lead to spurious solutions and instabilities. Nishikawa [50] suggested
the following modi�ed formula, in line with the interior penalty formulation [9] used in the DG frame-
work:

∇u∗h =
1
2

(
∇u+

h +∇u
−
h

)
+ η

(
u+
h −u

−
h

‖xτ+ − xτ−‖2

)
n, (2.42)

where xτ− and xτ+ are the reference locations of the adjacent control volumes, respectively, and η is
a heuristic damping factor, known as the jump term. Jalali et al. [34] have numerically tested di�erent
values of η in high-order �nite volume simulations, and have recommended a value of η = 1, which
is also used in this thesis.

The boundary viscous �uxes are evaluated in the same manner as reference [32], by simply replacing
the interior state into the viscous �ux matrix, QB(uh,∇uh,B) = Q(uh,∇uh)n. The boundary condi-
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tions are then enforced through a combination of soft and hard constraints. For adiabatic walls, the
velocity, heat �ux, and turbulence working variable have to be zero, which are expressed as:

Hard constraints: vh = 0 ν̃h = 0

Soft constraint: ∇Th ·n = 0
B is adiabatic wall, (2.43)

where the hard constraints are applied to the k-exact reconstruction process through the boundary
condition constraint function B. The soft constraint, however, is applied by simply replacing the value
of ∇Th · n with zero when evaluating the boundary �ux. On symmetry boundaries, the heat �ux,
normal derivative of the turbulence working variable, and the tangential viscous force have to be zero,
which are enforced via the following soft constraints:

Soft constraints: ∇ν̃h ·n = 0 ∇Th ·n = 0
(
(nT τhn)I − τh

)
n = 0 B is symmetry. (2.44)

Finally, no constraints are applied when evaluating the viscous �ux function on the far�eld bound-
aries.
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Chapter 3

Three-Dimensional Mesh Processing

The �nite volume method requires the subdivision of the domain into a set of control volumes, which
are obtained from a mesh. There are two di�erent approaches for constructing the control volumes:
cell-centered, and vertex-centered (cell-vertex). In the cell-centered approach, every cell of the mesh
is considered as a control volume, as shown in Figure 3.1a. Conversely, the vertex-centered approach
associates a control volume to each vertex of the mesh, and is dependent on the de�nition of the control
volume faces. Figure 3.1b shows an example of vertex-centered control volumes, which are created by
connecting the barycenter of each triangle to the midpoints of its edges. This method for constructing
the vertex-centered control volumes is known as the median-dual approach.

The only data that the solver requires about the geometry of the control volumes is their adjacency
and quadrature information. Thus, relevant data structures and algorithms have to be implemented
in a numerical solver package to o�er access to such information, with reasonable time and memory
cost. Although the cell-centered and cell-vertex methods are both straightforward to implement in two
dimensions, three-dimensional implementation of the latter is more di�cult to code, and requires more
quadrature points for integration at a given order of accuracy. As a result, the cell-centered method
has been chosen for the purpose of this thesis, and is implemented in ANSLib. This chapter discusses
the preprocessing steps required for a three-dimensional cell-centered �nite volume solver.

3.1 Element Mapping and Quadrature

In terms of solution accuracy, hexahedral and quadrilateral meshes are known to have superior prop-
erties in three and two dimensions, respectively, compared to tetrahedral and triangular meshes. Al-
though structured mesh generation techniques can create such grids, they can be expensive in terms of
time resources, since applying these algorithms to complex geometries requires a considerable amount
of human input. Conversely, unstructured mesh generation techniques are rather automatic, but are
not able to handle complex geometries without resorting to robust algorithms that only create simplex
cells, such as the Delaunay mesh generation methods [18]. Therefore, simulation grids are usually com-
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(a) (b)

Figure 3.1: Schematic of control volumes: (a) cell-centered, (b) median-dual cell-vertex.

posed of a mixture of di�erent cell types. The purpose of this section is to introduce the connectivity
and quadrature formulas for the control volumes and their faces in a computational mesh. Hereinafter,
both the control volumes and their faces will be referred to as elements.

The process starts with mapping each element E to its reference version Ê, which resides in a nondi-
mensional space. The mapping is a polynomial of degree l, that must guarantee geometric continuity
across neighboring elements. Thus, it is usually constructed from Lagrangian basis functions (polyno-
mials). Using the (̂.) notation for the reference space, the mapping can be written as:

x(x̂) =
Nlag∑
i=1

yiψ̂i(x̂) x̂ ∈ Ê, (3.1)

where ψ̂i and yi are the Lagrange basis functions and nodal locations, respectively, and Nlag is the
number of Lagrange points. Hexahedra, prisms and tetrahedra are the most commonly used three-
dimensional elements in both �nite element and �nite volume simulations. Pyramids, on the other
hand, are not very popular, and are used for making transitions between di�erent element types in
a mixed mesh. Quadrilateral and triangular elements are also used to represent the control volume
faces. Figure 3.2 shows the �rst order (l = 1) versions of these elements in the reference space. A well
de�ned mesh must provide the location of every node. Furthermore, it must store the local to global
node numbering for every element, along with its type and interpolation order.

For a reference element, a qth-order accurate quadrature rule, consists of Nqua point locations ẑi , and
weights ŵi , such that for every polynomial P̂ (x̂) of degree less than or equal to q − 1:

∫
Ê
P̂ (x̂)dÊ =

Nqua∑
i=1

P̂ (ẑi)ŵi . (3.2)

These quadrature rules are tabulated for di�erent orders and types of elements in the literature, such as
the work of Solin et al. [67]. By a change of variables, quadrature rules can be constructed for elements
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x̂1
x̂2

x̂3
1

2 3

4

5

6 7

8 ŷ1 = (−1,−1,−1) ψ̂1 = (1− x̂1)(1− x̂2)(1− x̂3)/8

ŷ2 = (+1,−1,−1) ψ̂2 = (1+ x̂1)(1− x̂2)(1− x̂3)/8

ŷ3 = (+1,+1,−1) ψ̂3 = (1+ x̂1)(1 + x̂2)(1− x̂3)/8

ŷ4 = (−1,+1,−1) ψ̂4 = (1− x̂1)(1 + x̂2)(1− x̂3)/8

ŷ5 = (−1,−1,+1) ψ̂5 = (1− x̂1)(1− x̂2)(1 + x̂3)/8

ŷ6 = (+1,−1,+1) ψ̂6 = (1+ x̂1)(1− x̂2)(1 + x̂3)/8

ŷ7 = (+1,+1,+1) ψ̂7 = (1+ x̂1)(1 + x̂2)(1 + x̂3)/8

ŷ8 = (−1,+1,+1) ψ̂8 = (1− x̂1)(1 + x̂2)(1 + x̂3)/8

1

2

3

4

5

6
ŷ1 = (0,0,−1) ψ̂1 = (1− x̂3)(1− x̂2 − x̂1)/2

ŷ2 = (1,0,−1) ψ̂2 = (1− x̂3)x̂1/2

ŷ3 = (0,1,−1) ψ̂3 = (1− x̂3)x̂2/2

ŷ4 = (0,0,+1) ψ̂4 = (1+ x̂3)(1− x̂2 − x̂1)/2

ŷ5 = (1,0,+1) ψ̂5 = (1+ x̂3)x̂1/2

ŷ6 = (0,1,+1) ψ̂6 = (1+ x̂3)x̂2/2

1

2 3

4

5
ŷ1 = (−1,−1,0) ψ̂1 = (x̂3 + x̂1 − 1)(x̂3 + x̂2 − 1)/4((1− x̂3) + ε)

ŷ2 = (+1,−1,0) ψ̂2 = (x̂3 − x̂1 − 1)(x̂3 + x̂2 − 1)/4((1− x̂3) + ε)

ŷ3 = (+1,−1,0) ψ̂3 = (x̂3 − x̂1 − 1)(x̂3 − x̂2 − 1)/4((1− x̂3) + ε)

ŷ4 = (+1,−1,0) ψ̂4 = (x̂3 + x̂1 − 1)(x̂3 − x̂2 − 1)/4((1− x̂3) + ε)

ŷ5 = (0,0,1) ψ̂5 = x̂3 ε = 10−20

1

2

3

4

ŷ1 = (0,0,0) ψ̂1 = 1− x̂1 − x̂2 − x̂3
ŷ2 = (1,0,0) ψ̂2 = x̂1

ŷ3 = (0,1,0) ψ̂3 = x̂2

ŷ4 = (0,0,1) ψ̂4 = x̂3

x̂1
x̂2

x̂3
1

2 3

4
ŷ1 = (−1,−1,0) ψ̂1 = (1− x̂1)(1− x̂2)/4

ŷ2 = (+1,−1,0) ψ̂2 = (1+ x̂1)(1− x̂2)/4

ŷ3 = (+1,+1,0) ψ̂3 = (1+ x̂1)(1 + x̂2)/4

ŷ4 = (−1,+1,0) ψ̂4 = (1− x̂1)(1 + x̂2)/4

1

2

3 ŷ1 = (0,0,0) ψ̂1 = 1− x̂1 − x̂2
ŷ2 = (1,0,0) ψ̂2 = x̂1

ŷ3 = (0,1,0) ψ̂3 = x̂2

Figure 3.2: First order reference Lagrange elements and polynomials. From top to bottom: hex-
ahedron, prism, pyramid, tetrahedron, quadrilateral, and triangle.
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in the physical space. For a three-dimensional element, we can write:

∫
E
f (x)dE =

∫
Ê
f (x(x̂))det(J (x̂))dÊ ≈

Nqua∑
i=1

f (x(ẑi))det(J (ẑi))ŵi . (3.3)

Here, J = ∂x
∂x̂ represents the Jacobian of the transformation given in Equation (3.1). A similar state-

ment can be made for two-dimensional elements, giving way to the following procedure for �nding
quadrature rules in the physical space:

2D Element: wi = ‖∂x̂1x×∂x̂2x‖2ŵi zi = x(ẑi)

3D Element: wi = det(J (ẑi))ŵi zi = x(ẑi)
. (3.4)

It is noteworthy to mention that the higher the interpolation order of an element, l, the higher the
values of q are required to evaluate an integral up to a certain order of accuracy. This is due to the
presence of the term det(J ) in Equation (3.3) that prevents a quadrature rule to maintain its nominal
order of accuracy in the physical space. Furthermore, for integrals on the faces that involve the normal
vector, the following formula can be used:

n =
∂x̂1x×∂x̂2x
‖∂x̂1x×∂x̂2x‖2

. (3.5)

In this thesis we have used the Lagrange polynomials and reference element quadrature rules that are
provided by the libMesh �nite element library [36].

3.2 Creating Curved Anisotropic Meshes

High-order numerical discretization schemes must correctly account for the curvature of domain
boundaries to maintain their nominal order of accuracy [14]. As conventional mesh generators create
only meshes with planar faces, modi�cation schemes are required before such meshes can be used for
a high-order numerical simulation. This modi�cation can be as simple as just replacing the boundary
faces with higher-order representations, as in isotropic meshes. Successful resolution of quantities of
interest in turbulent �ows, however, requires highly anisotropic meshes that have big spacing in the
wall tangent direction compared to small spacing in the wall normal direction. Replacing only the
boundary faces in this case would create self intersecting invalid domain subdivisions. Thus, the cur-
vature of the boundary faces must somehow be propagated throughout the domain to prevent mesh
tangling.

For structured meshes, a simple remedy is to agglomerate a �ne mesh and use the extra points to
de�ne the higher order representation of the cells and their faces. Although this method is e�ective,
its limitation in only working with structured meshes con�nes its use to veri�cation and benchmark
problems. A more general approach is to use a solid mechanics analogy, and model the faceted mesh
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as an elastic solid. Then, the boundary of the solid can be deformed to match its curved represen-
tation, leading to an internal deformation which is consequently used to de�ne the curvature of the
inner faces and cells. Hartmann and Leicht [29] gave a detailed summary of this family of methods.
They also introduced modi�cations that greatly reduce the computational cost, while increasing the
quality of the �nal mesh produced. Another approach was presented by Toulorge et al. [71], which
is based on minimizing a novel nonlinear energy function. Although this approach is more compli-
cated than using a linear elasticity analogy, the authors argue that it has better properties in terms of
robustness and e�ciency. Jalali and Ollivier-Gooch [32] have developed a simpli�ed two-dimensional
linear elasticity solver, which is currently used in ANSLib to generate high-order curved meshes for
two-dimensional turbulent �ow simulations. In this section, their approach will be extended to work
with three-dimensional unstructured meshes.

A linear elastic solid is governed by the Navier equations, which are derived from the conservation of
linear momentum, and expressed as [37]:

−∇ ·σ = 0, (3.6)

where σ is the stress tensor, and is de�ned as:

σ =
µ

2

(
∇u+∇uT

)
− λ
3
trace(∇u)I , (3.7)

where u = [u1,u2,u3]T is the displacement vector, and the variables µ and λ are the Lame’s coef-
�cients. The elastic solid properties are usually reported in terms of the Young’s modulus, E, and
Poisson’s ratio, ν, which are related to the Lame’s coe�cients as:

µ =
E

2(1+ ν)
λ =

νE
(1 + ν)(1− 2ν)

. (3.8)

On the boundaries, either the displacement, the normal force, or a linear relation between them has to
be speci�ed, which results in Dirichlet, Neumann, or Robin boundary conditions, respectively. These
conditions can all be expressed through a single equation:

Q(x)u+σn = f(x) x ∈ ∂Ω, (3.9)

where f is the normal force, and Q is a generalized spring constant. In the curved mesh generation
process, only the Dirichlet boundary conditions are of interest, which can be recovered by setting
Q = 1

ε I and f(x) = 1
εub(x) in Equation (3.9). Here, ub(x) is the prescribed boundary displacement, and

ε is a small number such as 10−10.

The solution method for the Navier equations and their boundary conditions will now be presented.
To ease the notation, the Einstein summation convention is used for indices i, j , k, and l, which are
reserved only for the geometric dimensions. In the �rst solution step, Equations (3.6) and (3.7) are
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combined to yield:

− ∂
∂xk

(
Kijkl

∂uj
∂xl

)
= 0 i = 1 · · ·Ndim. (3.10)

where Kijkl are the components of the fourth-order sti�ness tensor:

Kijkl = λδikδjl +µ(δijδkl + δilδjk). (3.11)

The next step involves the use of the continuous Galerkin �nite element method to solve the governing
equations. The numerical solution uh(x) will be de�ned as the linear superposition of a set of basis
functions,

uh(x) =
NDOF/Ndim∑

r=1

Uh,rψr(x), (3.12)

where ψr is the rth �nite element basis function. Note that the �nite element basis functions are
not necessarily the same as Lagrange polynomials that are used to represent the curved geometry in
Equation (3.1). Moreover, Uh,r is the rth sub-component of the vector of degrees of freedom, Uh, and
is expressed as:

Uh,r = [(Uh,r )1, (Uh,r )2, (Uh,r )3]
T . (3.13)

Subsequently, u is replaced with uh in Equation (3.10), and the result is multiplied by every basis
function ψr , which when integrated over the whole domain gives:

−
∫
Ω

∂
∂xk

(
Kijkl

∂uh,j
∂xl

)
ψrdΩ = 0 i = 1 · · ·Ndim r = 1 · · ·NDOF.

Then, using the integration by parts theorem and Equation (3.7), we arrive at the discretized weak
form:

NDOF∑
s=1

(∫
Ω

∂ψr
∂xk

Kijkl
∂ψs
∂xl

dΩ+
∫
∂Ω
ψrQijψsdS

)
(Uh,s)j =

∫
∂Ω
fiψrdS, (3.14)

for every i ≤Ndim and r ≤NDOF, which is a linear system of equations for �nding Uh.

The described solution scheme is implemented using the libMesh �nite element library [36] in this
thesis. The hierarchical polynomials [22] of order p are chosen as the basis functions, where p is an
input parameter. LibMesh supports quadrature rules of arbitrary orders of accuracy for assembling
the discretized system of equations. Therefore, a quadrature scheme accurate up to order (2p + 1) is
used, which ensures exact evaluation of all integrals, so that we do not have to worry about the e�ect
of quadrature error on the �nal solution.

To illustrate the performance of the implemented method, a model problem is presented, with a simple
geometry resembling a three-dimensional airfoil. This geometry along with its anisotropic mesh are
shown in Figure 3.3. The mesh is constituted of 1288 hexahedra. The curved part of the boundary is
analytically parameterized as:
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Figure 3.3: Geometry of the curved mesh generation test case

y(u,v) =
[
u + (R0 − bu)sin(v), cu, (R0 − bu)cos(v)−H0

(
1− bu

R0

)]T
0 < u < 1.25 − π

6
< v <

π
6

R0 = 1 H0 = cos(π/6) b = 2 c = 4,

(3.15)

where u and v are parameterization variables, and y is a point on the surface. To correctly capture the
curvature of the boundary, we need to project every point x on the boundary of the faceted mesh to the
surface of the original geometry. Then, the boundary condition simply becomes that of Dirichlet with
ub(x) = Proj(x) − x. The projection operator would be identity on the planar parts of the boundary.
On the curved part, however, we seek to �nd the point Proj(x) = y(u,v), such that the line xy is
perpendicular to the surface, i.e., we seek the unknowns [u,v,d]T that satisfy:

x− y(u,v)− dn(u,v) = 0, (3.16)

where d is the distance between the points x and y, and n is the surface normal vector,

n(u,v) =
∂uy×∂vy
‖∂uy×∂vy‖2

. (3.17)

The projection problem can be solved using the Newton’s method, globalized by line search, which
fully de�nes the boundary conditions. Finally, the values E = 1 and ν = 0.3 have been used in the
Navier equations. Note that due to the use of only Dirichlet boundary conditions, the value ofE cancels
out and is insigni�cant as long as it is uniform throughout the domain. However, changing ν in the
admissible range (0,0.5) will result in slightly di�erent displacement �elds.

To solve the presented model problem, we have used basis functions of orders p = 2,3, and a Con-
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Table 3.1: Performance of the linear elasticity solver

p NDOF Assembly Time(s) Linear Solve Time(s) Total Time(s)
2 36,801 4.1 7.8 12.5
3 117,390 52.4 98.0 153.6

(a) (b)

Figure 3.4: Curved mesh displacement magnitude: (a) z = 0 view, (b) y = 0.25 cross section.

jugate Gradient (CG) solver, to set up and solve Equation (3.14), respectively. The problem size and
solution time are listed in Table 3.1. Due to the nature of higher-order �nite element methods, it is not
surprising that the number of DOF and computational time have increased substantially for the p = 3

scheme. Figure 3.4 shows the magnitude of the displacement �eld obtained using quadratic hierar-
chical basis functions. As expected, the displacement �eld has the largest magnitude near the curved
wall, yet vanishes as one moves towards the other planar parts of the boundary. Moreover, there is
no displacement at the vertices of the mesh, as they are already on the true curved boundary. On the
other hand, there is a big displacement in the middle of the high aspect ratio cells that are near the
curved wall, i.e., where the di�erence between the true boundary and its planar approximation is the
greatest. The residual of the linear system (3.14) per CG iteration, is shown in Figure 3.5. Convergence
is rather smooth, and the residual drops below 10−11 in 18 and 25 iterations for the quadratic and
cubic basis functions, respectively. The increase in number of linear iterations for the p = 3 scheme is
due to its sti�er linear system and higher number of degrees of freedom.

3.3 Modi�ed Basis Functions for Highly Anisotropic Meshes

If Cartesian coordinate monomials, φi(x), are used as basis functions for the k-exact reconstruction
scheme, numerical di�culties arise when dealing with anisotropic meshes. The problem shows itself
in two situations. First, the condition number of the left hand side matrix of Equation (2.9) soars
drastically, even up toO(1ε ), where ε is the machine zero. This can in turn introduce an error of order
O(1) in the reconstruction coe�cients, and deteriorate the accuracy of uh. Secondly, the k-exactness
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Figure 3.5: Residual per iteration for the linear elasticity solver

of the reconstruction scheme is lost, i.e., for a function v and its projection on the discrete solution
space vh, the equality ‖v − vh‖ = O(hk+1) might not hold anymore. In this section, we will introduce
the remedies proposed by Jalali and Ollivier-Gooch [32] to mitigate these di�culties, along with their
generalization to three dimensions.

The key is to use two new sets of reconstruction basis functions that have better conditioning and
interpolation properties for anisotropic meshes. The �rst group is the set of principal coordinate basis
functions ϕ+i(x), which are de�ned as:

{
ϕ+i
τ (x)

∣∣∣ i = 1 . . .Nrec
}
=

{ 1
a!b!c!

(wτ1(x))
a(wτ2(x))

b(wτ3(x))
c
∣∣∣∣∣ a+ b+ c ≤ k } . (3.18)

In this equation, wτ (x) is the principal coordinate of control volume τ evaluated at point x. To �nd
this coordinate transformation, the moment of inertia tensor Iτ must be found,

(Iτ )ij =
∫
τ
(xi − xτi)(xj − xτj )dΩ. (3.19)

As this tensor is symmetric, it can be diagonalized, Iτ = QτΛτQT
τ , where Q and Λ are its matrix of

right eigenvectors, and diagonal matrix of eigenvalues, respectively. Then, the principal coordinates
are evaluated from: wτ (x) = Qτ (x − xτ ). Although these basis functions span the same polynomial
space as the Cartesian monomials, φi(x), they greatly reduce the condition number of the left hand
side matrix in Equation (2.9). Our heuristic approach is to use these basis functions for control volumes
which have a high aspect ratio, yet their faces are almost planar.

For control volumes that are close to wall boundaries and have high distortion, a more complicated
approach must be adopted. As a starting point, let us assume that for every control volume τ with such
property, we somehow can �nd a vector function (dτ , tτ1, tτ2), such that at every point x in the vicinity
of the control volume, ∇dτ (x) is perpendicular to the closest wall boundary. Furthermore, ∇tτ1(x) and
∇tτ2(x) must be perpendicular to∇dτ (x), and form an orthogonal basis for R3. The vector (dτ , tτ1, tτ1)
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Figure 3.6: Construction of approximate wall coordinates for a two-dimensional control volume
τ

is then denoted as the wall coordinates of control volume τ . In two dimensions, the wall coordinate
vector shrinks to (dτ , tτ ), so a rather simple strategy can be used to �nd it. The normal coordinate,
dτ (x), is set to the distance to wall of point x minus that of the reference point of τ . For the tangential
coordinate tτ , however, a compact analytic relation does not exist. Thus, the approximate value t̃τ is
used,

t̃τ (x) = ‖(x− xτ )− ((x− xτ ) · ∇dτ (xτ ))∇dτ (xτ )‖2, (3.20)

which is the length of the projection of x − xτ onto the perpendicular plane of ∇dτ (xτ ). Figure 3.6
schematically shows the construction of the approximate wall coordinates for a sample control vol-
ume. Although it is possible to �nd these coordinates for every quadrature point in the vicinity of
the control volume of interest, �nding their derivatives can be complicated, or even impossible. Thus,
yet another coordinate transformation is introduced, namely the curvilinear coordinates ξτ , which
closely approximates (dτ , t̃τ ), while having a nice polynomial relationship in terms of x,

ξτ =
Nrec∑
i=1

biτϕ
+i
τ (x), (3.21)

whereϕ+i
τ are the same principal coordinate monomials introduced in Equation (3.18). The coe�cients

bτ are subsequently found by requiring ξτ to be as close as possible to (dτ , t̃τ ), at the reference point
of all the control volumes in Stencil(τ). Mathematically, the following minimization problem must be
solved:

minimize
b1
τ ...b

Nrec
τ

∑
σ∈Stencil(τ)∪{ τ }

(h(xσ )− ξτ1(xσ ))2 + (t̃(xσ )− ξτ2(xσ ))2

subject to ξτ (xτ ) = 0,

(3.22)

which has an identical solution process to that of Equation (2.9). Note that it is theoretically possible to
use the Cartesian monomials φiτ (x) in the de�nition of the curvilinear coordinates in Equation (3.21),
but this results in a poor-conditioned least square problem in �nding the biτ coe�cients, and thus is
avoided. In this thesis, the emphasis is on anisotropic three-dimensional meshes that are symmetric
in the x3 direction. Taking advantage of the symmetry, we are able to de�ne ξτ1 and ξτ2 using the
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two-dimensional method, and simply set ξτ3 = x3 − xτ3.

Now that the curvilinear coordinates are introduced, their corresponding basis functions, ϕ∗iτ (x), can
be de�ned as:{

ϕ∗iτ (x)
∣∣∣ i = 1 . . .Nrec

}
=

{ 1
a!b!c!

(ξτ1(x))
a(ξτ2(x))

b(ξτ3(x))
c
∣∣∣∣∣ a+ b+ c ≤ k } . (3.23)

Numerical experiments have shown that using these basis functions for near-wall high aspect ratio
elements restores the k-exactness of the reconstruction scheme [32].
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Chapter 4

Solving the Discretized System of
Equations

This chapter begins by introducing the Pseudo Transient Continuation (PTC) method that �nds the
solution of Equation (2.4) via solving a series of systems of linear equations. Available methods for the
solution of these linear systems are introduced, and their shortcoming in handling three-dimensional
�nite volume problems is addressed. Finally, a new solution scheme is proposed, and its performance
is compared to other previously available methods in ANSLib.

4.1 Pseudo Transient Continuation

The PTC method [17, 32, 35, 47] starts from an initial guess for the steady-state solution of Equa-
tion (2.4). The initial guess is usually taken from the free-stream conditions or the converged solution
of a lower-order accurate scheme. Then, the solution is updated iteratively until the norm of the
residual vector, ‖R(Uh)‖2, falls below a desired threshold. Consider the backward Euler time advance
scheme:

U+
h −Uh
∆t

+R(Uh) = 0, (4.1)

where ∆t is the time step size, and U+
h is the the DOF vector at the next time level. Linearizing Equa-

tion (4.1) gives: (
I
∆t

+
∂R
∂Uh

)
δUh = −R(Uh), (4.2)

where δUh is the change in the DOF vector between the current and next time levels. Furthermore,
∂R
∂Uh

is the residual Jacobian matrix, and is evaluated using the algorithm proposed by Michalak and
Ollivier-Gooch [47].

The PTC method is derived from the backward Euler scheme by making a few modi�cations. First, a
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nonuniform time step is used for every control volume. Thus, Equation (4.2) is changed to:(
V

CFL
+
∂R
∂Uh

)
δUh = −R(Uh), (4.3)

where CFL is the Courant-Friedrichs-Lewy number, and the diagonal matrix V is the time step scaling
matrix. The entries of V corresponding to control volume τ are denoted as Vτ , and found from the
equation:

Vτ =
λmax,τ

hτ
, (4.4)

where hτ is the hydraulic diameter of the control volume, and λmax,τ is the maximum eigenvalue of
the inviscid �ux Jacobian over all the control volume surface quadrature points. Secondly, after δUh
is solved for, the solution is updated according to the line search algorithm:

Uh←Uh +ωδUh, (4.5)

where ω ∈ (0 1] is the line search parameter, which must satisfy:∥∥∥∥∥ωV δUhCFL
+R(Uh +ωδUh)

∥∥∥∥∥
2
≤ κ‖R(Uh)‖2. (4.6)

Here, κ controls the strictness of the line search algorithm, and κ = 1.2 performs well for both viscous
and inviscid �ows [17]. In addition, the vector entries corresponding to the turbulence working vari-
able are omitted in the evaluation of the norms in Equation (4.6) to enhance convergence [77]. Finally,
the CFL number is updated at each iteration according to the value of ω:

CFL←


1.5CFL ω = 1

CFL 0.1 < ω < 1

0.1CFL ω < 0.1

. (4.7)

At the beginning of the solution process, the approximate solution is away from its steady-state value,
and a small CFL number prevents divergence by making the approximate solution follow a physical
transient path. On the other hand, when the approximate solution gets close to its steady-state value,
Equation (4.7) will increase theCFL number. Therefore, the e�ect of the term V

CFL in Equation (4.3) will
be reduced, and Newton iterations would be recovered. Thus, as better solution approximations are
obtained, the convergence rate will get closer to the optimum behavior of Newton’s iterations.
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4.2 Linear Solvers

Every PTC iteration requires the solution of the linear system Ax = b, where:

A =
(
V

CFL
+
∂R
∂Uh

)
x = δUh b = −R(Uh). (4.8)

The exact solution of the linear system is carried out by combinatorial algorithms that typically cal-
culate a lower-upper (LU) factorization of the LHS matrix. Although there has been great progress in
the development of such methods, e.g., MUMPS linear solver library [7], they still su�er from huge
consumption of memory and time resources, when applied to su�ciently large problems. Further-
more, these methods do not take advantage of any initial guess for the solution, nor the fact that only
an approximate solution is of interest. As a result, scientists in the CFD community have resorted to
iterative methods for the solution of huge linear systems.

Iterative methods start from an initial guess x(0), and then generate a sequence of improving approx-
imate solutions. Iterative methods are either categorized as stationary, or a member of the Krylov
Subspace (KSP) family. In a stationary method the approximate solution at step k + 1, x(k+1), is only
dependent on the residual vector of the previous iteration, r(k), which is de�ned as:

r(k) = b−Ax(k). (4.9)

Conversely, a KSP method updates the approximate solution based on all or some of the previous
residual vectors. ANSLib uses a KSP method, GMRES [63], as its linear solver because of its successful
history in solving aerodynamic problems [17, 41, 49, 56, 78], and the fact that it is readily available as
a black box solver in many numerical computation libraries, such as PETSc [10].

The GMRES method iteratively constructs an orthogonal basis for the search space spanned by the
vectors r(0),Ar(0), . . . ,Ak−1r(0). Then, it seeks the next approximate solution vector, x(k), as the member
of the search space that minimizes ‖r(k)‖2. Furthermore, the search space is usually restarted after a
certain number of iterations to prevent it from becoming too large. The behavior of the GMRES method
is strongly dependent on the eigenvalue structure of matrix A. The more compact the eigenvalue
spectrum, the fewer iterations are required for convergence. As the LHS matrices arising from a k-exact
�nite volume discretization usually lack a nice eigenvalue distribution, the performance of GMRES
must be improved by means of preconditioning, which is introduced in the following section.

4.3 Preconditioning

Preconditioning is the transformation of the original linear system into one which has the same solu-
tion, but is easier to solve using iterative methods. Preconditioning is usually done by �rst �nding a
matrix P , such that the condition number of the product matrix AP is smaller than that of A. Then,
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the original equation is changed to:
AP y = b x = P y. (4.10)

The preconditioning matrix can be constructed either directly from A, or the LHS matrix resulting
from a lower-order discretization scheme. The matrix from which the preconditioner is constructed
will be denoted as A∗.

The main steps of the preconditioned GMRES algorithm are shown in Algorithm 1 [63], where no
restart strategy and a zero initial guess have been assumed for simplicity. In this algorithm, the columns
of the Vm ∈ RNunk×m matrix form an orthonormal basis for the search space spanned by the vectors
b, (AP )b, . . ., (AP )m−1b. At each iterations m, the Hm and Vm matrices are used to �nd the solution
guess, x(m) = AP Vmαm, and the norm of its corresponding residual, ‖r(m)‖2 = γm. Also, n is the
maximum number of iterations while rtol is the tolerance in the reduction of the residual norm. A
smaller tolerance value will result in a more accurate solution, but requires more GMRES iterations.
Finally, note that the GMRES solver only requires the matrix-by-vector product of the P matrix, and
does not need its explicit form.

In this section, the preconditioners available in ANSLib, namely Point Gauss-Seidel, Block Jacobi, and
ILU will be introduced, and their shortcoming in solving large three-dimensional problems will be
discussed. More complicated preconditioners, such as multigrid and domain decomposition have not
been considered in this thesis because of the inconsistent results available in the literature regarding
their performance. For example, Shahbazi et al. [65] reported that the linear multigrid method can be
ten times faster than conventional single grid algorithms. On the other hand, Diosady and Darmofal
[20], and Wallra� et al. [77] reported cases for which they were not able to achieve a signi�cant speedup
factor.

4.3.1 Point Gauss-Seidel

The Point Gauss-Seidel (PGS) method is a stationary iterative solver that can also be used as a precon-
ditioner for the GMRES method. First, A∗ is decomposed as:

A∗ = L+D +U , (4.11)

where D is the control volume diagonal part of A, L is the strict lower part, and U is the strict upper
part. Then, the matrix-by-vector product P v of the PGS preconditioner is de�ned as:

z(0) = 0

z(1) = (D +L)−1(v−A∗z(0))
...

z(n) = (D +L)−1(v−A∗z(n−1))

P v = z(n),

(4.12)
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Algorithm 1 Preconditioned GMRES with no restart and a zero initial guess.
function GMRES(A,P ,b,n,rtol)

β = ‖b‖2
v1 = b/β
V1 = [v1], H0 = []
m = 0
repeat

m =m+1
zm = P vm
w = Azm
hm,vm+1 = Arnoldi(Vm,w)
Vm+1 = [Vm,vm+1], Hm = [Hm−1,hm]
αm,γm =DenseSolve(β,Hm)

until m > n or γm/β < rtol
Return x(m) = P Vmαm

function Arnoldi(Vm,w)
Returns the vector vm+1, which is the unit normal component of w to the space spanned by the
previous vi (i ≤m) vectors.
Returns the column vector hm, where (hm)i is the length of the projection of w over the vi vector
if i ≤m+1, and is zero otherwise.

function DenseSolve(β,Hm)
Returns αm = argminα ‖b−AP Vmα‖ and γm =minα ‖b−AP Vmα‖.
The objective of this function is achieved by solving the equivalent problem
argminα

∥∥∥βe1 −Hmα∥∥∥2 using a rotational change of variables. Solving this problem in-
cludes the solution of a dense m × m linear system, and yields both γm and αm. Also,
e1 = [1,0, . . . ,0]T .
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Figure 4.1: Schematic of Block Jacobi decomposition: (a) The mesh, and the partition belonging
to each processor (b) The lower, upper, and block diagonal matrices.

where n is the number of PGS iterations. Although PGS is a strong preconditioner for solving lin-
ear systems arising from discretization on isotropic meshes, it performs poorly when dealing with
anisotropic meshes [44]. Therefore, PGS is only used for the solution of Poisson’s and Euler equations
in this thesis, for which an isotropic mesh correctly captures the solution.

4.3.2 Block Jacobi

The Block Jacobi (BJ) preconditioner also uses a decomposition of matrix A∗, with the di�erence that
the diagonal blocks of matrixD must be composed of all the degrees of freedom belonging to the same
processor. Figure 4.1a shows a partitioned mesh, and Figure 4.1b shows the corresponding structure
and decomposition of the LHS matrix. The matrix-by-vector product for this preconditioner is denoted
as:

z(0) = 0

Dz(1) = v−A∗z(0)

...

Dz(n) = v−A∗z(n−1)

P v = z(n),

(4.13)

where n is the number of BJ iterations. Note that the block diagonal matrix D cannot be inverted
exactly anymore, and each intermediate vector z(k) must be solved for by using an inner iterative
solver. Nevertheless, since every block of D only belongs to a single processor, the inner iterative
solver can be serial. Thus, BJ is a means of parallelizing serial preconditioners, and is used for this
purpose in ANSLib.
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4.3.3 ILU

The incomplete lower-upper factorization with �ll level p (ILUp) produces an approximation of the LU
factorization of A∗, such that the approximate matrices have a much smaller nonzero structure than
the exact LU factorization. The factored lower and upper triangular matrices L̃ and Ũ are computed by
performing Gaussian elimination on A∗, but ignoring certain matrix entries. Then, the preconditioner
matrix is set to P = (L̃Ũ )−1. A larger �ll level results in L̃ and Ũ matrices with bigger nonzero
structure, but is likely to construct a more e�ective preconditioner [63]. Nevertheless, the ILU method
is inherently a serial algorithm, so it is implemented in conjunction with the BJ method for parallel
simulations.

Since the ILU preconditioner is based on matrix factoring, its performance is dramatically a�ected
by the ordering of DOFs in the matrix A∗. Quotient minimum degree (QMD) and reverse Cuthill-
McKee (RCM) are among the reordering algorithms that are o�ered in PETSc [10], and are used in
ANSLib. The former reduces the �ll of the factored matrices, while the latter reduces the �ll of matrix
A∗ itself.

In the course of development of ANSLib, Nejat and Ollivier-Gooch [49] used an ILU preconditioner
factored from the LHS matrix of the 0-exact scheme to solve the Euler equations. They showed the
good performance of their preconditioning method for 1- and 2-exact �nite volume schemes, but con-
cluded that the 3-exact scheme requires a more e�ective preconditioner. Later, Michalak and Ollivier-
Gooch [47] demonstrated that incomplete factorization of the higher-order LHS matrix results in faster
convergence compared to factoring the 0-exact LHS matrix for inviscid problems. They further con-
jectured that factoring the LHS matrix to the full order using a �ll level of 3 has a feasible memory
consumption, and can be a practical preconditioner for three-dimensional �ow problems. Hereinafter,
the ILU preconditioner of �ll level p factored from the 0-exact and full-order LHS matrices will be
denoted as LO-ILUp and HO-ILUp, respectively.

Viscous �ow problems are more challenging than their inviscid counterparts. Jalali and Ollivier-Gooch
[32] observed that a �ll level of three or larger is required for HO-ILU preconditioning of viscous turbu-
lent �ow problems. The HO-ILU3 method is a practical preconditioner for two-dimensional problems,
but its memory cost soars drastically in three-dimensions, hindering its implementation for such prob-
lems. To mitigate this issue, a new ILU based algorithm will be introduced in the next section that not
only has a less memory consumption than HO-ILU3, but also does not su�er from poor performance
of LO-ILU when used with the 3-exact reconstruction scheme.

4.4 Improved Preconditioning Algorithms

In this section, an e�ective preconditioning algorithm is proposed based on inner GMRES iterations.
Furthermore, the lines of strong unknown coupling are presented for reordering of the LHS matrix.
As will be shown in Section 4.5, this reordering method can improve the speed of the solver consider-
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ably.

4.4.1 Inner GMRES Iterations

Some researchers have observed that the lower-order LHS matrix can construct a more e�ective pre-
conditioner compared to its higher-order counterpart because the structure of the lower-order LHS
matrix only includes the immediate neighbors of every control volume [41, 56, 78]. Nevertheless, as
will be shown in Section 4.5, the LO-ILU method can behave poorly for high-order reconstruction
schemes applied to viscous �ow problems. Our conjecture is that using the exact inverse of the lower-
order LHS matrix as the preconditioner: P = (A∗)−1, rather than the product of the ILU matrices:
P = (L̃Ũ )−1, can mitigate the mentioned issue. In this case, the matrix-by-vector product z = P v can
be found by solving the system:

A∗z = v. (4.14)

Nevertheless, the linear system of Equation (4.14) can be as large as the original linear system Ax = b,
and its solution cannot be carried out exactly. Instead of seeking the exact solution, the proposal is
to use further inner ILU preconditioned GMRES iterations to �nd an approximate solution for Equa-
tion (4.14). The resulting preconditioner will be referred to as GMRES-LO-ILU in this thesis, and its
performance will be examined in Section 4.5.

When an inner GMRES solver is used as the preconditioner, P will not be a linear operator anymore,
and its e�ect changes from iteration to iteration. Therefore, the equation x(m) = P Vmαm cannot be
used any longer. The solution to this issue is using a Flexible GMRES (FGMRES) outer solver [62].
The resulting combination, i.e., a GMRES-LO-ILU preconditioned FGMRES solver, is shown in Al-
gorithm 2. Unlike normal GMRES, the z vectors are found by applying the inner GMRES solver to
the v vectors, and are explicitly kept track of as the columns of the Z matrix. Moreover, the �nal
approximate solution is written as x(m) = Zmαm while the ILU factored matrices are still supplied to
the algorithm for preconditioning the inner GMRES solver. Also, tolerance values and limits for the
maximum number of iterations have to be speci�ed for both the inner and outer solvers which are
identi�ed by the subscripts (.)i and (.)o, respectively.

4.4.2 Lines of Strong Coupling Between Unknowns

Forming non-overlapping lines that contain control volumes with strongly coupled degrees of free-
dom is bene�cial in constructing e�ective preconditioners. Mavriplis [43] introduced the concept of
lines in anisotropic unstructured meshes to enhance the performance of multigrid solvers via implicit
smoothing. His approximate algorithm for �nding such lines was purely geometric-based, and only
considered control volume aspect ratios. Thus, his method only captured coupling through di�usion.
Okusanya et al. [52] later developed an algorithm that considered both the advection and di�usion phe-
nomena. Fidkowski et al. [21] proved that such an algorithm results in a set of unique lines, and used
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Algorithm 2 GMRES-LO-ILU preconditioned FGMRES with no restart and a zero initial guess.
function FGMRES(A,A∗, L̃, Ũ ,b,no,rtolo,ni ,rtoli )

β = ‖b‖2
v1 = b/β
V1 = [v1], H0 = [], Z0 = [],
m = 0
repeat

m =m+1
zm =GMRES(A∗, (L̃Ũ )−1,vm,ni ,rtoli )
w = Azm
hm,vm+1 = Arnoldi(Vm,w)
Vm+1 = [Vm,vm+1], Hm = [Hm−1,hm], Zm = [Zm−1,zm]
αm,γm =DenseSolve(β,Hm)

until m > n or γm/β < rtol
Return x(m) = Zmαm

the lines for nonlinear p-multigrid solution of Euler equations. Diosady and Darmofal [20] showed
that reordering the unknowns, such that members of a line have consecutive numbers, is an e�ective
reordering strategy for the ILU preconditioner. In this thesis, the line reordering algorithm of [20] is
implemented to improve the speed of the linear solver.

In the �rst step of the line creation algorithm, a weight is assigned to every face inside the mesh.
This weight is derived from the Jacobian of the 0-exact discretization of the advection-di�usion equa-
tion,

∇ · (vu −µL∇u) = 0, (4.15)

where u is the unknown variable, v is the velocity taken from the initial conditions, and µL is an input
parameter that controls the sensitivity of the lines to mesh anisotropy. The weight of a face f is then
de�ned as:

W (f ) = max
(
∂Rσ
∂uτ

,
∂Rτ
∂uσ

)
, (4.16)

where W is the weight of the face, σ and τ are the adjacent control volumes of the face, and R the
residual vector. If a face is located on the boundary, Equation (4.16) will not directly be applicable to
it. Thus, a mirrored ghost control volume is placed adjacent to every boundary face. After �nding
the face weights, calling Algorithm 3 will construct the lines, where F(τ) is the set of faces of control
volume τ , and σ = C(τ,f ) is the control volume which has the face f in common with control volume
τ . This algorithm ensures that two adjacent control volumes are connected to each other if and only
if they have their �rst or second highly weighted face lying between them [21].

To illustrate the performance of the algorithm, an anisotropic mesh for the geometry of a NACA 0012
airfoil is considered, as shown in Figure 4.2. The velocity has been taken from the 2-exact solution of
the �ow resulting from a Mach number of 0.15, a Reynolds number of 6×106, and an angle of attack
of 10◦. The parameter µL is set to the heuristic value of 10−5. As desired, the lines follow the direction
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Algorithm 3 Line creation
function CreateLines . Calling this function creates all lines.

Unmark all control volumes.
while there a exists an unmarked control volume τ do

MakePath(τ) . Forward path creation
MakePath(τ) . Backward path creation

function MakePath(τ) . Helper function.
repeat

For control volume τ , pick the face f ∈ F(τ) with the highest weight, such that control
volume σ = C(τ,f ) is not part of the current line.
if f is a boundary face then

Terminate
else if σ is marked then

Terminate
else if f is not the �rst or second ranked face of σ in weight then

Terminate
Mark σ .
Add σ to the current line.
τ← σ

until Termination

of mesh anisotropy near wall boundaries, while their pattern changes, and follows the �ow direction
in other parts of the geometry.

4.5 Numerical Comparisons

In this section, the performance of the proposed preconditioning algorithm is studied by consider-
ing the turbulent �ow around a NACA 0012 airfoil, with α = 10◦, Ma = 0.15, and Re = 6 × 106.
Three nested meshes with approximately 25K, 100K, and 400K control volumes (NCV = 25K,100K,
and 400K) are considered, where the coarsest mesh and its corresponding lines of strong unknown
coupling are shown in Figure 4.2. The far�eld boundaries are located almost 500 chords away from
the airfoil, and the chord length has a nondimensional value of one. This problem is taken from the
NASA Turbulence Modeling Resource (TMR) website [60], and has been previously studied by Jalali
and Ollivier-Gooch [32], where they used a HO-ILU3 preconditioner with QMD reordering. Only
the highest-order discretization scheme of ANSLib (3-exact) is considered here, since it results in the
sti�est linear systems that are most di�cult to solve. Also, the initial conditions are taken from the
steady-state solution of the lower-order 2-exact scheme.

The ILU based preconditioning methods tested are shown in Table 4.1. In all cases, the outer GMRES
solver stops when the linear residual of Equation (4.3) is reduced by a factor of 10−3, or a maximum
number of 500 iterations is performed. The maximum Krylov subspace size is 100 for the outer GMRES
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Block Color

Figure 4.2: Mesh and lines of strong unknown coupling for the geometry of a NACA 0012 airfoil
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Table 4.1: Preconditioning methods considered

Case Preconditioning Reordering
rtoli ,niname method algorithm

A HO-ILU3 QMD —
B LO-ILU0 RCM —
C LO-ILU0 lines —
D GMRES-LO-ILU0 RCM 10−3,10
E GMRES-LO-ILU0 lines 10−3,10
E∗ GMRES-LO-ILU0 lines 10−3,60
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Figure 4.3: Comparison of residual histories for the NACA 0012 problem obtained using di�erent
preconditioning algorithms

solver, and the initial CFL number is set to 10−2. Furthermore, the simulation ends when the norm
of the residual vector ‖R(Uh)‖2 is reduced by a factor of 10−8. The command-line options supplied to
the ANSLib executable for each case are listed in Appendix A. Cases A-E are compared to each other
on the 25K and 100K meshes, while case E∗ is used to solve the problem on the �nest mesh. Note that
other combinations of preconditioner and reordering schemes that are not considered in Table 4.1,
did not result in convergence even for the coarse mesh. Moreover, an extensive search for �nding
the optimum number of inner iterations ni has not been carried out, and the large number of inner
iterations for case E∗ is chosen as a safe measure to ensure convergence on the �nest mesh.

The residual history of the solver for each preconditioning algorithm is shown in Figure 4.3, where
the wall time is obtained from a single core of an Intel i7-4790 (3.60 GHz) CPU. Our proposed pre-
conditioning algorithm (case E) outperforms all the other methods on both mesh sizes, and takes only
half the time of the HO-ILU3 algorithm (case A) to �nd the steady-state solution. Furthermore, the
line reordering algorithm shows its prominence on the 100K control volume mesh, where the RCM
reordering algorithm fails. The e�ectiveness of the new preconditioning algorithm is further demon-
strated by solving the problem on a 400K control volume mesh. The residual history for this case is
shown in Figure 4.4.
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Figure 4.4: Residual history for the NACA 0012 problem on the �nest mesh of 400K control
volumes

Table 4.2 shows the number of PTC iterations (N-PTC), the number of outer GMRES iterations (N-
GMRES), total memory consumption, CPU time spent on the linear solver (LST), and total computa-
tional time (TST). The proposed preconditioning scheme (case E) speeds up the linear solve process by
a factor of three, and results in a twofold reduction in memory consumption, compared to the HO-ILU3
method. The shortcomings of the LO-ILU methods (cases B and C) are evident because of their large
number of PTC iterations and failure in convergence, on the coarse and medium meshes, respectively.
Also, the memory consumption scales linearly with respect to the problem size for the proposed pre-
conditioning scheme, whereas the linear solve time seems to be increasing at a much more rapid rate.
Although the proposed preconditioning scheme has a huge linear solve time for NCV = 400K, it still
outperforms the HO-ILU3 method, which cannot handle this mesh size at all.

The viscous drag (CDv), the pressure drag (CDp), and the lift (CL) coe�cients computed from the
numerical solution along with their reference values are listed in Table 4.3. The reference values are
taken from the NASA TMR website, and are obtained by the FUN3D [2] solver running on a very
�ne mesh (approximately 2M quadrilaterals). As expected, the change in the coe�cients between the
�ne and medium meshes is much smaller than that of the medium and coarse meshes. Furthermore,
the gap between the coe�cients and their reference values gets smaller with mesh re�nement, with
the exception of CL. Solution singularities, di�erent boundary condition implementations between
ANSLib and FUN3D, or inexact evaluation of the distance from wall function may partly be accountable
for the non-ideal behavior of the lift coe�cient. Nevertheless, the purpose of this section was the
solution of the discretized system of equations, which according to Figure 4.4 has been performed
correctly.
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Table 4.2: Performance comparison for di�erent preconditioning schemes. Cases with entries
marked by “−” did not converge to the steady state solution.

Preconditioner N-PTC N-GMRES Memory(GB) LST(s) TST(s)
NCV = 25K

A 37 956 1.4 416 635
B 44 10,893 0.7 264 572
C 51 13,692 0.7 328 705
D 34 1,856 0.7 134 379
E 34 1,787 0.7 118 361

NCV = 100K
A 39 4,640 5.9 3,122 4,068
B − − 2.8 − −
C − − 2.8 − −
D − − 3.2 − −
E 36 4,396 3.2 1,308 2,348

NCV = 400K
E∗ 38 6,869 13.1 87,312 91,502

Table 4.3: Computed drag and lift coe�cients for the NACA 0012 airfoil

NCV CDp CDv CL
25K 0.00545 0.00583 1.0951
100K 0.00615 0.00623 1.0905
400K 0.00609 0.00619 1.0922

NASA TMR 0.00607 0.00621 1.0910
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Chapter 5

Three-Dimensional Results

This chapter presents the k-exact �nite volume solution of four three-dimensional problems. The
problems are studied in order of di�culty, and the solutions are veri�ed to assess the accuracy and
performance of the solver. First, Poisson’s equation is solved in a cubic domain, where the source term
is obtained from a manufactured solution [64]. Then, the Euler equations are solved to simulate the
subsonic inviscid �ow around a unit sphere. Subsequently, the solution of Navier-Stokes + negative
S-A equations are presented to simulate the subsonic viscous turbulent �ow over a �at plate and the
extruded NACA 0012 airfoil. All the command-line options provided to the solver for running each
case are provided in Appendix A.

All the �ow simulations were performed using the Grex cluster from the WestGrid computing facilities
[3]. Each node of the cluster consists of two 6-core Intel Xeon X5650 2.66GHz processors, and has a
minimum of 48GB memory. All compute nodes are connected by a non-blocking In�niband 4X QDR
network. The wall time and memory cost of all the �ow problems are reported using 8 processors.
In addition, a strong parallel scaling test is conducted for the �at plate and the sphere test cases, i.e.,
the same problem is solved by using di�erent numbers of processors ranging from 1 to 10 while the
resulting speedup is recorded.

5.1 Poisson’s Equation in a Cubic Domain

For this test case, Poisson’s equation is considered inside the domain Ω = [0,1]3. The manufactured
exact solution

u = sinh(sin(x1))sinh(sin(x2))sinh(sin(x3)) (5.1)

is used to �nd the source term, while homogeneous Dirichlet conditions are imposed over all the
boundaries. Slice plots of the exact solution are shown in Figure 5.1. The solution has a maximum
value of (sinh(1))3 at the point (12 ,

1
2 ,

1
2 ), and decays to zero on the boundaries.

A study of the solution accuracy is performed on four families of unstructured grids. The �rst grid
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Figure 5.1: Exact solution of Poisson’s problem

family is only composed of hexahedra while the other families are composed of only prisms, mixture
of pyramids and tetrahedra, and only tetrahedra, respectively. The hexahedral grids are constructed by
perturbing the vertices of a uniformN ×N ×N structured mesh. Other grid families are subsequently
created by decomposing each hexahedron into the desired element types. Figure 5.2 shows all the grids
for N = 5.

The problem is solved on grid sizes: N = 10,20,40, and reconstruction orders: k = 1,2,3. Figure 5.3
shows the L2 norm of the discretization error ‖eh‖2 as a function of the mesh length scale h = 1

N and
the number of degrees of freedom. Optimal accuracy order of k + 1 is attained for the k = 1 and 3

reconstruction schemes as expected, whereas the k = 2 scheme only achieves a second-order accurate
solution. Nevertheless, the non-optimal behavior of k = 2 is expected for Poisson’s problem, and was
previously addressed and theoretically explained by Ollivier-Gooch and Van Altena [54].

5.2 Inviscid Flow Around a Sphere

The second test problem is the inviscid �ow around a sphere with unit radius, and centered at the point
(0,0,0). The Mach number is equal to Ma = 0.38, and the free-stream �ow is in the x1 direction. This
problem is chosen as a three-dimensional extension of the inviscid �ow around a circle, the higher-
order solution of which was studied by Bassi and Rebay [14]. Three prismatic grids (64K, 322K, and 1M
control volumes) are used, where the far�eld is located at a distance of 100 dimensionless units from
the sphere surface. A symmetric cut of the coarsest mesh near the sphere surface is shown in Figure 5.4.
The faces and control volumes adjacent to the wall boundaries are curved using only second-order
Lagrange polynomials, as quadratic functions are su�cient to represent a spherical surface. To ensure
that numerical quadrature does not introduce additional error in the solution, a quadrature scheme
accurate up to order k +2 is employed.
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(a) (b)

(c) (d)

Figure 5.2: Di�erent meshes for the solution of Poisson’s problem: (a) hexahedra, (b) prisms, (c)
mixture of pyramids and tetrahedra, (d) tetrahedra.
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Figure 5.3: Discretization error versus mesh size for Poisson’s problem: (a) Error versus mesh
length scale, (b) Error versus number of degrees of freedom.

Figure 5.4: Symmetric cut of the coarsest mesh near the sphere surface
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Figure 5.5: Relative entropy norm versus mesh size for the sphere problem

In all cases, the initial solution is the uniform free-stream condition everywhere, and the initial CFL
number is set to 10. The GMRES linear solver stops when the linear residual of Equation (4.3) is 10−3

times its initial value, or a maximum of 500 iterations is performed. Furthermore, the GMRES solver
has a maximum Krylov subspace size of 100, and is preconditioned using the BJ preconditioner with
no = 4 iterations. The inner solver for the BJ preconditioner is PGS with ni = 4 iterations. Although
the LHS matrix of the linear system is calculated to full-order, its preconditioner is constructed from
the LHS matrix of the 0-exact reconstruction scheme.

As the �ow does not contain any discontinuity, the entropy must be constant throughout the domain.
Therefore, the L2 norm of the entropy relative to the free-stream conditions, ‖S − S∞‖2, has an exact
value of zero, and is used to study the solution accuracy. The convergence of ‖S − S∞‖2 with mesh
re�nement is shown in Figure 5.5, where the mesh length scale is de�ned as h = (NCV)−1/3. The k = 1

and 3 reconstruction schemes converge even faster than their expected ratios of 2 and 4, respectively.
The convergence ratio for the k = 2 reconstruction scheme, however, is half an order smaller than its
nominal value. The slight deviation of the convergence orders from their theoretical values can partly
be attributed to the fact that the meshes employed are not nested.

The e�ect of the reconstruction order k on solution accuracy is also evident from the qualitative Mach
contours on the x3 = 0 symmetry plane, shown in Figure 5.6. Not surprisingly, only the k = 3 re-
construction scheme has been able to capture the symmetry of the �ow on the �nest mesh. Further-
more, the arti�cial wake behind the sphere seems smaller for the k = 2 solution compared to that of
k = 1.

The norm of the residual vector per PTC iteration is shown in Figure 5.7. Convergence is independent
of the reconstruction order k, but the number of iterations increases as the mesh is re�ned. It is
noteworthy to mention that the increase in the initial norm corresponding to mesh re�nement is due
to the de�nition of the residual vector R(Uh) in Equations (2.3) and (2.4). Each entry of the residual
vector is divided by the size of its corresponding control volume. Therefore, when the mesh is re�ned,
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Figure 5.6: Computed Mach contours on the x3 = 0 symmetry plane for the sphere problem
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Figure 5.7: Norm of the residual vector per PTC iteration for the sphere problem

Table 5.1: Number of iterations and the resource consumption of the �ow solver for the sphere
problem

k N-PTC N-GMRES Memory(GB) LST(s) TST(s)
NCV = 64K

1 15 182 2.94 24 107
2 15 181 3.91 20 112
3 15 255 6.00 31 320

NCV = 322K
1 16 207 13.24 134 579
2 16 212 14.05 132 620
3 16 300 28.39 271 1,879

NCV = 1M
1 17 275 39.48 486 1,969
2 17 277 45.52 536 2,150
3 17 385 85.78 793 5,904

the control volume sizes become smaller, and the residual vector entries will increase.

The number of iterations and the resource consumption of the �ow solver are listed in Table 5.1. The
time spent on linear solves makes up less than twenty percent of the computational time, suggesting
that the Jacobian evaluation is the major computational bottleneck for this problem. Either increas-
ing the reconstruction order, or the number of control volumes results in sti�er linear systems, which
require more GMRES iterations to be solved. Nevertheless, both the solution time and memory con-
sumption increase linearly with the number of control volumes for all k. Also, the advantage of using
a high-order reconstruction scheme can be clearly seen: According to Figure 5.5, the k = 1 scheme
needs at least one level of uniform mesh re�nement on the �nest grid to achieve an entropy norm of
10−7. While such a mesh re�nement would increase the resource consumption by a minimum factor
of eight, the k = 3 scheme achieves the same level of accuracy by consuming only two times the same
resources.
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Figure 5.8: The parallel speedup of the solver for the sphere problem: NCV = 322K and k = 3.

To test the parallel scalability of the �ow solver, the sphere problem was solved on di�erent numbers of
processors ranging from 1 to 10 withNCV = 322K and k = 3. The parallel speedup of the total solution
process, the Jacobian evaluation algorithm, and the linear solver scheme were computed separately,
and are shown in Figure 5.8. Not surprisingly, the linear solver algorithm is less scalable than that of
the Jacobian integrator mainly because the performance of the BJ preconditioner decreases with an
increase in the number of processors. The sudden dip of the parallel speedup for 9 processors may be
due to a less favorable mesh partitioning, or communication problems on the cluster. Regardless, the
overall solution algorithm scales very well in parallel, as the linear solver only constitutes a small part
of the overall process.

5.3 Turbulent Flow Over a Flat Plate

For this test case, we consider a three-dimensional extension of the �at plate veri�cation case from
the NASA TMR website. The computational domain is Ω = [−0.33,2]× [0,1]× [0,1], and the nondi-
mensional parameters have the values: Re = 5 × 106, Ma = 0.2, α = 0, and ψ = 0. The �at plate
is located on the (0 ≤ x1 ≤ 2)∧ (x2 = 0) boundary, where adiabatic solid wall conditions are imposed.
Symmetry boundary conditions are imposed on the (x3 = 0), (x3 = 1), and (−0.33 ≤ x1 ≤ 0)∧ (x2 = 0)

boundaries, while other boundaries are considered as far�eld. As symmetry boundary conditions are
imposed on all the boundaries normal to the x3-axis, the exact solution of this problem must be con-
stant in the x3 direction. Therefore, the solutions obtained in this section can be compared to the
two-dimensional results from the NASA TMR website, which are obtained by the CFL3D solver [1] on
a 544× 384 grid.

The two-dimensional meshes provided by the NASA TMR website are extruded in the x3 direction
to construct a series of nested three-dimensional grids with dimensions: 60 × 34 × 7, 120 × 68 × 14,
and 240 × 136 × 28. The coarsest mesh is depicted in Figure 5.9. An anisotropic mesh is necessary
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Figure 5.9: Coarsest mesh for the �at plate problem.

to correctly capture the �ow pattern in the boundary layer and at the plate leading edge. On each
mesh, the problem is solved for k = 1, then for k = 2, and �nally for k = 3. The free-stream con-
ditions are used as the initial conditions for k = 1, while the initial solution for each k ≥ 2 is taken
from the converged solution of the (k − 1)-exact scheme. The GMRES-LO-ILU2 method is used as the
preconditioner, with 10 inner GMRES iterations, and the RCM reordering algorithm. Moreover, the
ILU factorization is performed only on the diagonal block of each processor. Other solver parameters
are the same as Section 5.2.

To schematically demonstrate the correctness of the solution, the distribution of the turbulence work-
ing variable obtained from k = 3 on the �nest mesh is plotted on the x3 = 0.5 plane, and shown in Fig-
ure 5.10a. The results for a 544×384 grid provided by the NASA TMR are also shown in Figure 5.10b.
There is a close agreement between the reference solution of NASA TMR and the solution of this thesis,
although a few undershoots of small magnitude are present in the latter. The next quantity of interest
is the distribution of the nondimensional eddy viscosity µT

µ on the line (x1 = 0.97)∧ (x3 = 0.5), which
is depicted in Figure 5.11. Note how the solution discontinuity at control volume boundaries is quite
evident for k = 1, while higher-order reconstruction schemes result in much smoother solutions. The
reference solution from the NASA TMR website is also shown in Figure 5.11. An acceptable agree-
ment is observable between our computed results and the reference values. Also, it is evident that a
higher-order reconstruction scheme leads to a more accurate estimate of the eddy viscosity.

To further verify the numerical solution, the convergence of the drag coe�cient CD and the skin
friction coe�cientCf at the point x = (0.97,0,0.5) are studied with mesh re�nement. Table 5.2 shows
the computed values on di�erent meshes. The computed values converge faster for a higher-order
reconstruction scheme, such that only k = 3 o�ers an accurate solution on the medium mesh. The
reference values from the NASA TMR library are also shown in the same table. As desired, there is a
good agreement between the computed values using the method of this thesis and the reference values
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(a) 3-exact: min : 7× 10−3, max : 379 (b) NASA TMR: min : 0, max : 378

Figure 5.10: Distribution of the turbulence working variable on the plane x3 = 0.5 for the �at
plate problem
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Figure 5.11: Distribution of the nondimensional eddy viscosity on the line (x1 = 0.97)∧ (x3 =
0.5) for the �at plate problem
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Table 5.2: Computed value and convergence order of the drag coe�cient and the skin friction
coe�cient at the point x = (0.97,0,0.5) for the �at plate problem

CD Cf
NASA TMR 0.00286 0.00271

Mesh
k

1 2 3 1 2 3

60× 34× 7 0.00396 0.00233 0.00233 0.00350 0.00228 0.00222
120× 68× 14 0.00301 0.00281 0.00285 0.00283 0.00268 0.00271
240× 136× 28 0.00287 0.00286 0.00286 0.00274 0.00273 0.00273

Convergence order 2.8 3.3 5.4 3 3 5.1
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Figure 5.12: Norm of the residual vector per PTC iteration for the �at plate problem

of the NASA TMR website. The convergence orders ofCD andCf are computed using the procedure of
Celik et al. [16], and are also shown in Table 5.2. All the reconstruction schemes have attained optimal
convergence rates. Nevertheless, care must be taken when interpreting the estimated convergence
rates because the procedure of Celik et al. is most reliable when the error has already achieved an
asymptotic behavior on the coarsest mesh, which might not necessarily be the case here.

The norm of the residual vector per PTC iteration is shown in Figure 5.12. Similar to Section 5.2,
convergence is not a�ected by the reconstruction order k, but is slightly degraded as the number of
degrees of freedom increases. The number of iterations and the resource consumption of the �ow
solver are listed in Table 5.3. The majority of the total time is spent on linear solves, showing that
the linear systems arising from viscous turbulent �ows are much sti�er compared to their inviscid
counterparts. As desired, memory consumption increases linearly with mesh re�nement, whereas the
linear solve time does not scale as nicely as for the inviscid sphere problem. Most importantly, the
bene�t of higher-order methods can once again be observed: While the k = 3 solution on the medium
mesh o�ers the same level of accuracy as the k = 1 solution on the �ne mesh, the computational time
of the former is smaller than that of the latter by a factor of four.
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Table 5.3: Number of iterations and the resource consumption of the �ow solver for the �at plate
problem

k N-PTC N-GMRES Memory(GB) LST(s) TST(s)
60× 34× 7 mesh

1 26 844 0.42 31 55
2 26 1,009 1.35 42 124
3 26 1,071 2.10 57 202

120× 68× 14 mesh
1 28 1,436 5.24 510 713
2 29 1,864 8.30 742 1,489
3 29 2,041 14.63 825 2,124

240× 136× 28 mesh
1 29 2,492 38.77 6,222 7,884
2 27 3,305 60.70 12,353 18,137
3 27 2,906 121.81 23,141 35,412
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Figure 5.13: The parallel speedup of the solver for the �at plate problem: 120 × 68 × 14 mesh
and k = 3.

A strong parallel scaling test is conducted for the k = 3 scheme on the 120 × 68 × 14 mesh. The
resulting speedup for di�erent parts of the solver is shown in Figure 5.13, which is quite similar to the
results of the sphere problem, and suggests that the preconditioning algorithm is performing well for
viscous �ow problems. Nevertheless, the net scaling of the solver degrades marginally compared to
the sphere problem, as linear solves take up a bigger portion of the total solution time.

5.4 Turbulent Flow Over an Extruded Airfoil

For the last test case, we consider a three-dimensional extension of the �ow around the NACA 0012 air-
foil. The computational domain of Section 4.5 is extruded in the x3 direction with an extrusion length of
one nondimensional unit. Symmetry boundary conditions are imposed on the two boundaries normal

53



X

Y

Z

(a) Hexahedral mesh

X

Y

Z

(b) Mixed prismatic-hexahedral mesh

Figure 5.14: Meshes for the extruded NACA 0012 problem

to the x3-axis, while other boundaries retain their conditions from Section 4.5. The nondimensional
parameters are: Re = 6× 106, Ma = 0.15, α = 10, and ψ = 0. As the exact solution must be constant
in the x3 direction, the solutions are compared to the reference values provided by NASA TMR, which
are obtained by the FUN3D [2] solver on a 7169× 2049 grid.

Two meshes are employed: a hexahedral mesh with NCV = 100K, and a mixed prismatic-hexahedral
mesh withNCV = 176K. In both cases, quadrature points are obtained from the tensor product of one-
dimensional quadrature formulas and the quadrature points of the curved two-dimensional meshes.
A portion of the meshes is depicted in Figure 5.14. In both cases, there are 7 layers of extruded control
volumes in the x3 direction. A value of MinNeigh(3) = 30 performed acceptably for the hexahedral
mesh, whereas the same value resulted in an ill-conditioned version of Equation (2.7) for the mixed
mesh. Therefore, MinNeigh(3) = 60 was used in the latter case as a safe measure to ensure a well-
posed minimization problem for Equation (2.7). Other solver parameters, including the order ramping
procedure for solution initialization, are the same as Section 5.3.

The computed contours of turbulence working variable on the x3 = 0 plane are shown in Figure 5.15
for the k = 3 solutions. The mixed-mesh resolves the wake region more accurately, while providing
a smoother distribution of the turbulence working variable. The superior performance of the mixed
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(a) Hexahedral mesh
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Figure 5.15: Distribution of the turbulence working variable for the extruded NACA 0012 prob-
lem on the x3 = 0 plane

mesh can be explained by its bigger number of degrees of freedom, and the presence of extra �ow
aligned faces that are missing in the hexahedral mesh.

The distribution of the surface pressure coe�cient on the intersection of the airfoil and the x3 = 0.5

plane is computed using the k = 1 and 3 solutions, and depicted in Figure 5.16. Generally, the computed
distributions are consistent with the reference values obtained by FUN3D. Closer views of the plots are
shown for four distinct points to better compare the results. As expected, the k = 3 scheme predicts
the most accurate values, particularly on the mixed mesh. For example, the FUN3D results show that
the pressure coe�cient on the lower surface becomes bigger than that of the upper surface, near the
trailing edge of the airfoil. This phenomenon is captured by the k = 3 solutions, but not observed by
those of k = 1.

The computed and the reference lift and drag coe�cients are shown in Table 5.4. It seems that the
hexahedral mesh is too coarse, as none of the schemes can obtain accurate enough solutions. For the
mixed mesh, the k = 3 scheme gives satisfactory results with less than 10% error for all the coe�cients.
The solution of the other schemes, however, is quite o�, particularly for the pressure drag coe�cient
CDp. Note that the reference results are obtained using a 7169 × 2049 mesh, which is more than a
thousand times �ner than the meshes employed in this thesis.

The norm of the residual vector per PTC iteration is shown in Figure 5.17. Convergence is marginally
a�ected by either the mesh type or the reconstruction order k. The latter is a desirable result of using
the steady-state solution of a k-exact scheme as the initial guess for the (k +1)-exact solution.

Finally, parameters related to the iterative convergence of the solver are listed in Table 5.5. The linear
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Figure 5.16: Distribution of surface pressure coe�cient on the intersection of the extruded
NACA 0012 airfoil and the x3 = 0.5 plane.

Table 5.4: Computed drag and lift coe�cients for the extruded NACA 0012 airfoil problem

k CDp CDv CL
NASA TMR

− 0.00607 0.00621 1.0910
Hex mesh

1 0.01703 0.00582 1.0619
2 0.01702 0.00497 1.0507
3 0.00301 0.00472 1.0417

Mixed mesh
1 0.01129 0.00574 1.0735
2 0.00365 0.00565 1.0776
3 0.00550 0.00536 1.0869
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Figure 5.17: Norm of the residual vector per PTC iteration for the extruded airfoil problem

Table 5.5: Resource consumption of the �ow solver for the extruded NACA 0012 problem

k N-PTC N-GMRES Memory(GB) LST(s) TST(s)
Hex mesh, NCV = 100K

1 33 1,154 4.77 317 744
2 31 1,788 6.82 730 2,097
3 31 2,415 12.23 1,057 3,215

Mixed mesh, NCV = 176K
1 34 1,132 8.70 458 1,164
2 32 1,769 10.87 800 2,427
3 31 2,185 26.47 1,311 4,666

solve time makes up around 30% of the total computation time. The total computation time is strongly
dependent on k, but does not di�er considerably between the two meshes for the same reconstruction
order. Moreover, the memory consumption seems to be linearly increasing with both k andNCV.
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Chapter 6

Conclusions

A higher-order solution framework was presented for steady-state three-dimensional compressible
�ows. The highlights of this solution framework include: a k-exact �nite volume discretization, a
PTC solution algorithm, a memory lean preconditioner based on inner GMRES iterations, and an ILU
reordering algorithm based on lines of strong coupling between them.

Higher-order accuracy was achieved by constructing a piecewise continuous representation of the
control volume average values. This piecewise continuous representation, also referred to as the dis-
crete solution, was de�ned as the superposition of a set of basis functions. Monomials of Cartesian,
principal, or curvilinear coordinates were used as the basis functions while the coe�cient of each
monomial in the superposition was found by solving a constrained minimization problem. In the �-
nite volume method, the convective �uxes were evaluated by the Roe �ux function. The viscous �uxes
were obtained by adding a stabilizing damping term to the averaged gradients of the two adjacent
states. Speci�cally, the �ux functions were presented for the RANS equations fully coupled with the
negative S-A turbulence model.

The curvature of the domain boundaries must be correctly accounted for in high-order numerical
discretization schemes, yet simply replacing the boundary faces of highly anisotropic meshes with
higher-order representations can result in invalid intersecting elements. Thus, a three-dimensional
�nite element elasticity solver was developed to propagate the curvature of the boundary throughout
the domain, and to prevent mesh tangling. The developed solver was tested by solving a model problem
that imitated the geometry of a three-dimensional airfoil. Also, the principal coordinates and the
curvilinear coordinates basis functions were presented to prevent the k-exact reconstruction scheme
from behaving poorly on curved anisotropic meshes.

The PTC method was revisited for the solution of the discretized nonlinear equations, where each
iteration required the solution of a linear system. The challenges involved in the solution of these
linear systems were addressed for three-dimensional problems, and a novel method was introduced
to mitigate these issues. In this method, the FGMRES linear solver was preconditioned using inner
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GMRES iterations, which were subsequently preconditioned by the ILU method. The L̃ and Ũ matri-
ces were factored from the LHS matrix of the 0-exact discretization scheme, and the lines of strong
unknown coupling were employed to reorder the unknowns. By considering the 2-D fully turbulent
�ow around the NACA 0012 airfoil, it was shown that the proposed preconditioning algorithm is more
e�cient both in terms of solution time and memory consumption, compared to the other ILU based
preconditioning methods considered.

The correct implementation of element quadrature and connectivity information in the solver was
veri�ed by solving Poisson’s equation inside a cubic domain. Subsequently, inviscid and viscous tur-
bulent test problems were considered, where the solution was veri�ed against reference values either
obtained analytically or provided by the NASA TMR website. In all cases, a satisfactory agreement
was observed between the solutions of this thesis and the reference values. Moreover, accuracy tests
were performed with mesh re�nement, and optimal convergence order was attained for reconstruc-
tion orders k = 1 and 3. The k = 2 scheme, however, was slightly inferior in performance compared
to its theoretical convergence order.

Timing results demonstrated the bene�t and practicality of using higher-order methods for obtaining
a certain level of accuracy. A second-order discretization scheme required a �ner grid and more com-
putational time to attain the same level of accuracy compared to a higher-order discretization scheme.
Furthermore, strong parallel scaling tests were performed, and excellent scaling was observed for the
Jacobian integration algorithm. The linear solver algorithm also demonstrated satisfactory parallel
scaling results, although the performance in this area can still be improved. It was also observed that
the required number of PTC iterations for convergence is independent of the reconstruction order
while only slightly a�ected by the grid size.

Much work remains to be done to extend the solution method of this thesis to solve industrially prac-
tical problems:

1. A theoretical study can be conducted to investigate the inferior performance of the k = 2 dis-
cretization scheme. The theoretical approach for unstructured mesh-based discretization meth-
ods is usually through the functional analysis framework. A possible starting point can be the
work of Barth and Larson [13] where they prove theoretical convergence orders for the k-exact
�nite volume method.

2. The boundary condition implementations of this work, though functional, might not be the best
choice. An investigation of other possible boundary condition implementations has the potential
to improve convergence properties and solution quality [29].

3. The proposed preconditioning algorithm does not require the explicit form of the full-order LHS
matrix. Thus, a matrix-free method can be implemented, where the matrix-by-vector product
of the full-order LHS matrix is evaluated by �nite di�erence Fréchet derivatives while only the
0-exact LHS matrix is assembled. This strategy can reduce the memory cost considerably [55],
while possibly increasing the computation time. Sacri�cing computation time for less memory
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usage might be unavoidable for very large problems.

4. In this thesis, it was possible to directly use the 2-D curvilinear coordinate basis functions for 3-
D problems, as the solutions of the test problems considered were constant in the x3 direction. A
practical problem, on the other hand, requires the de�nition of truly 3-D curvilinear coordinate
basis functions. It should be possible to generalize the method of Section 3.3 by providing a
de�nition for the third wall coordinate. Alternatively, a big hexahedral meta-element can be
constructed by extruding a portion of the nearest wall surface to include all the members of a
target reconstruction stencil. The reference coordinates of the constructed meta-element can
then be used as the curvilinear coordinates.

5. The original 0-exact discretization scheme does not take the gradient dependent source terms
into account. Modifying this scheme to somehow capture the in�uence of the gradient depen-
dent source terms can greatly enhance the performance of the preconditioning algorithm [78].

6. Employing a line Gauss-Seidel preconditioner instead of the ILU method, in conjunction with
the proposed inner GMRES preconditioner has the potential to improve the parallel scalability
of the linear solver [4].

7. As already mentioned, real world problems contain solution discontinuities, and require shock
capturing methods to be used in conjunction with the k-exact reconstruction scheme. Shock
capturing is even more important for higher-order methods, as they are more prone to develop-
ing unstable and spurious solutions.

8. Haider et al. [26] recently introduced a multi-level reconstruction scheme that uses compact
reconstruction stencils, and eliminates the need to directly work with large stencils. Their high-
order �nite volume method is therefore better suited for parallel simulations. Although their
work is limited to the linear advection equation, its application in the context of turbulent com-
pressible �ows is worth investigating.

9. An hp-adaptive strategy can be much more e�cient in achieving a prescribed level of accuracy,
compared to uniform mesh re�nement, or using high reconstruction orders for all the control
volumes [33, 38]. Desirably, hanging nodes resulting from adaptively re�ned meshes �t natu-
rally into the k-exact �nite volume framework. Nevertheless, an e�ective error estimator must
be designed that selects the candidate regions for re�nement. In the case of anisotropic mesh
re�nement, the error estimator must also provide an estimate of the direction in which the error
changes most abruptly.
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Appendix A

ANSLib Command-Line Options

The command line interface provided by the ANSLib library consists of an executable �le Solver, which
can be executed through the Linux shell, with the input options provided in a separate text �le:

$ ./Solver -opt < address of options file >

ANSLib achieves parallelism using the Message Passing Interface (MPI). Thus, parallel jobs can be
executed via the MPI launcher :

$ mpiexec -np < # of processors > ./Solver -opt < address of options file >

In the remainder, the input options are presented for the test problems considered in this thesis. Note
that comments are distinguished by the character #, in the options �le.

A.1 Two-Dimensional Turbulent Flow over a NACA 0012 Airfoil
from Section 4.5

For this problem, several cases of preconditioners were considered. The following options are shared
between all the cases:

Common Options
# --------------------------- MESH

-d 2 # Dimensions

-mesh_type c # Cell-centered mesh

-f < Location of .mesh file without extension >

-B < Location of .bdry file without extension >

-fec < Location of .fec file without extension >

# --------------------------- HISTORY AND SOLUTION FILE NAME

-sol < Location of initial solution input file >

-sol_out < Location of final solution output file >

-ita_history_name < Location of residual history output file >
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# --------------------------- ACCURACY

-a < Order of accuracy of the scheme: a=k+1 >

# --------------------------- PHYSICS

-physics RoeTurbSA2D # 2-D RANS + negative S-A

-reynolds 6e6 # Reynolds number

-mach 0.15 # Mach number

-angle 10 # Angle of attack

# --------------------------- NON-LINEAR SOLVER OPTIONS

-exnut 1 # Ignore \tilde{nu} entries in the line-search

-C 0.01 # Initial CFL number

-no_distance_weight # No distance weights in the k-exact

# reconstruction least squares problem

-pseudolts_fixed # No additional CFL ramping

-max_iter 80 # Maximum number of PTC iterations

-jacobian_type recanalytic # Evaluate the Jacobian exactly

-ita_target_residual 1e-5 # Target norm for the non-linear residual

To implement di�erent preconditioning strategies, distinct sets of options have to be provided to the
�ow solver in each case:

Extra Options for Case A
# --------------------------- LINEAR SOLVER OPTIONS

# --------------------------- KSP

-ksp_max_it 500 # Maximum # of GMRES iterations

-ksp_rtol 1e-3 # rtol for the outer KSP

-ksp_type gmres # KSP solver type

# --------------------------- PC

-pc_type ilu # Preconditioner type: ILU

-pc_factor_levels 3 # ILU fill level: 3

-pc_factor_mat_ordering_type qmd # ILU reordering type: QMD

Extra Options for Case B
# --------------------------- LINEAR SOLVER OPTIONS

# --------------------------- KSP

-ksp_max_it 500 # Maximum # of GMRES iterations

-ksp_rtol 1e-3 # rtol for the outer KSP

-ksp_type gmres # KSP solver type

# --------------------------- PC

-pre_order 1 # Order of scheme for A*

-pc_type ilu # Preconditioner type: ILU

-pc_factor_levels 0 # ILU fill level: 0

-pc_factor_mat_ordering_type rcm # ILU reordering type: RCM

Extra Options for Case C
# --------------------------- LINEAR SOLVER OPTIONS

# --------------------------- KSP
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-ksp_max_it 500 # Maximum # of GMRES iterations

-ksp_rtol 1e-3 # rtol for the outer KSP

-ksp_type gmres # KSP solver type

# --------------------------- PC

-mu 1e-5 # \mu_L for line construction

-pre_order 1 # Order of scheme for A*

-pc_type ilu # Preconditioner type: ILU

-pc_factor_levels 0 # ILU fill level: 0

-pc_factor_mat_ordering_type lines # ILU reordering type: LINES

Extra Options for Case D
# --------------------------- LINEAR SOLVER OPTIONS

# --------------------------- KSP

-ksp_max_it 500 # Maximum # of GMRES iterations

-ksp_rtol 1e-3 # rtol for the outer KSP

-ksp_type fgmres # KSP solver type: FGMRES

# --------------------------- PC

-pre_order 1 # Order of scheme for A*

-pc_type ksp # Preconditioner type: inner-KSP

-ksp_ksp_type gmres # inner-KSP type: GMRES

-ksp_ksp_max_it 10 # inner-KSP n_i: 10

-ksp_pc_type ilu # inner-KSP preconditioner: ILU

-ksp_pc_factor_levels 0 # ILU fill level: 0

-ksp_pc_factor_mat_ordering_type rcm # ILU reordering: RCM

Extra Options for Case E
# --------------------------- LINEAR SOLVER OPTIONS

# --------------------------- KSP

-ksp_max_it 500 # Maximum # of GMRES iterations

-ksp_rtol 1e-3 # rtol for the outer KSP

-ksp_type fgmres # KSP solver type: FGMRES

# --------------------------- PC

-mu 1e-5 # \mu_L

-pre_order 1 # Order of scheme for A*

-pc_type ksp # Preconditioner type: inner-KSP

-ksp_ksp_type gmres # inner-KSP type: GMRES

-ksp_ksp_max_it 10 # inner-KSP n_i: 10

-ksp_pc_type ilu # inner-KSP preconditioner: ILU

-ksp_pc_factor_levels 0 # ILU fill level: 0

-ksp_pc_factor_mat_ordering_type lines # ILU reordering: LINES

A.2 Poisson’s Equation from Section 5.1
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# --------------------------- MESH

-d 3 # Dimensions

-mesh_type c # Cell-centered mesh

-f < Location of .vmesh file without extension >

# --------------------------- HISTORY AND SOLUTION FILE NAME

-sol_out < Location of final solution output file >

-ita_history_name < Location of residual history output file >

#---------------------------- PHYSICS

-physics Poisson # Solve Poisson’s equation

-poisson_problem_data sinhsin # Name of the manufactured solution

# --------------------------- ACCURACY

-a < Order of accuracy of the scheme: a=k+1 >

# --------------------------- NON-LINEAR SOLVER OPTIONS

-C 1e10 # Initial CFL number

-jacobian_type recanalytic # Evaluate the Jacobian exactly

-no_distance_weight # No distance weights in the k-exact

# reconstruction least squares problem

-max_iter 3 # Maximum number of PTC iterations

-ita_target_residual 1e-10 # Target norm for the residual vector R

# --------------------------- LINEAR SOLVER OPTIONS

-ksp_type gmres # KSP type: GMRES

-ksp_rtol 1e-12 # GMRES rtol

-pre_order 1 # Order of scheme for A*

-pc_type sor # Preconditioner type: PGS

-pc_sor_its 10 # Number of PGS iterations: 10

A.3 Inviscid Flow Over a Sphere from Section 5.2

# --------------------------- MESH

-d 3 # Dimensions

-mesh_type c # Cell-centered mesh

-f < Location of .vmesh file without extension >

# --------------------------- HISTORY AND SOLUTION FILE NAME

-sol_out < Location of final solution output file >

-ita_history_name < Location of residual history output file >

----------------------------- PHYSICS

-physics Euler3D # Solve 3-D Euler equations

-mach 0.38 # Mach number

-angle 0 # Angle of attack

# --------------------------- ACCURACY

-a < Order of accuracy of the scheme: a=k+1 >

-mcell3d_sphere_hack 1 # Curve the boundary of the sphere

-mcell3d_extraq_face 1 # Use quadrature rule of order k+1 for faces

-mcell3d_extraq_cell 1 # Use quadrature rule of order k+1 for cells

# --------------------------- NON-LINEAR SOLVER OPTIONS
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-C 10 # Initial CFL number

-jacobian_type recanalytic # Evaluate the Jacobian exactly

-pseudolts_fixed # No additional CFL ramping

-max_iter 25 # Maximum number of PTC iterations

-ita_target_residual 1e-6 # Target norm for the residual vector R

# --------------------------- LINEAR SOLVER OPTIONS

-ksp_type fgmres # KSP type: FGMRES

-ksp_rtol 1e-3 # GMRES rtol

-pre_order 1 # Order of scheme for A*

-pc_type sor # Preconditioner type: PGS parallelized by BJ

-pc_sor_its 4 # Number of local PGS iterations

-pc_sor_lits 4 # Number of BJ iterations

A.4 Turbulent Flow Over a Flat Plate from Section 5.3

# --------------------------- MESH

-d 3 # Dimensions

-mesh_type c # Cell-centered mesh

-f < Location of .vmesh file without extension >

# --------------------------- HISTORY AND SOLUTION FILE NAME

-sol < Location of initial solution input file >

-sol_out < Location of final solution output file >

-ita_history_name < Location of residual history output file >

----------------------------- PHYSICS

-physics TurbSA3D # Solve 3-D RANS + negative SA

-mach 0.2 # Mach number

-reynolds 5e6 # Reynolds number

-angle 0 # Angle of attack

-turbsa3d_problem_data flat_plate # Specify post-processing operations

# --------------------------- ACCURACY

-a < Order of accuracy of the scheme: a=k+1 >

# --------------------------- NON-LINEAR SOLVER OPTIONS

-C 0.1 # Initial CFL number

-jacobian_type recanalytic # Evaluate the Jacobian exactly

-pseudolts_fixed # No additional CFL ramping

-max_iter 25 # Maximum number of PTC iterations

-ita_target_residual 1e-8 # Target norm for the residual vector R

-no_distance_weight # No weight for the k-exact

# reconstruction least squares problem

# --------------------------- LINEAR SOLVER OPTIONS

-ksp_type fgmres # KSP type: FGMRES

-ksp_rtol 1e-3 # GMRES rtol

-pre_order 1 # Order of scheme for A*

-pc_type ksp # Preconditioner type: inner-KSP

-ksp_ksp_max_it 10 # Inner-KSP n_i: 10
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-ksp_ksp_type gmres # Inner-KSP type: GMRES

-ksp_pc_type bjacobi # Inner-KSP preconditioner: BJ

# BJ number of iterations defaults to 1

-ksp_sub_pc_type ilu # BJ inner solver: ILU

-ksp_sub_pc_factor_levels 2 # ILU fill level: 2

-ksp_sub_pc_factor_mat_ordering_type rcm # ILU reordering type: RCM

A.5 Turbulent Flow Over an Extruded NACA 0012 Airfoil from
Section 5.4

# --------------------------- MESH

-d 3 # Dimensions

-mesh_type e # Cell-centered extruded mesh

-mext_nlayer 7 # Number of extruded layers

-mext_btag 2 # Boundary tag for the extruded walls (symmetry)

-mext_length 1 # Extrusion length

-f < Location of .mesh file without extension >

-B < Location of .bdry file without extension >

-fec < Location of .fec file without extension >

# --------------------------- HISTORY AND SOLUTION FILE NAME

-sol < Location of initial solution input file >

-sol_out < Location of final solution output file >

-ita_history_name < Location of residual history output file >

----------------------------- PHYSICS

-physics TurbSA3D # Solve 3-D RANS + negative SA

-mach 0.15 # Mach number

-reynolds 6e6 # Reynolds number

-angle 10 # Angle of attack

-turbsa3d_problem_data naca0012 # Specify post-processing operations

# --------------------------- ACCURACY

-a < Order of accuracy of the scheme: a=k+1 >

# --------------------------- NON-LINEAR SOLVER OPTIONS

-C 0.1 # Initial CFL number

-jacobian_type recanalytic # Evaluate the Jacobian exactly

-pseudolts_fixed # No additional CFL ramping

-max_iter 100 # Maximum number of PTC iterations

-ita_target_residual 1e-5 # Target norm for the residual vector R

-no_distance_weight # No weight for the k-exact

# reconstruction least squares problem

# --------------------------- LINEAR SOLVER OPTIONS

-ksp_type fgmres # KSP type: FGMRES

-ksp_rtol 1e-3 # GMRES rtol

-pre_order 1 # Order of scheme for A*

-pc_type ksp # Preconditioner type: inner-KSP

-ksp_ksp_max_it 10 # Inner-KSP n_i: 10
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-ksp_ksp_type gmres # Inner-KSP type: GMRES

-ksp_pc_type bjacobi # Inner-KSP preconditioner: BJ

# BJ number of iterations defaults to 1

-ksp_sub_pc_type ilu # BJ inner solver: ILU

-ksp_sub_pc_factor_levels 2 # ILU fill level: 2

-ksp_sub_pc_factor_mat_ordering_type rcm # ILU reordering type: RCM
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Appendix B

Sample Script for Running a Parallel
Job on Grex

The computational work on WestGrid systems is carried out through a non-interactive batch job sys-
tem. Rather than directly executing the solver in the interactive mode, a request has to be made in
the form of a job script, which speci�es the commands to be executed as well as the required memory,
computation time, number of nodes, and number of processors. The following shows a sample job
script that executes the solver using 8 processors, and redirects the output to a text �le:

Sample Job Script
#!/bin/bash

#PBS -S /bin/bash ## This is a request file for job submission

#PBS -l nodes=8:ppn=1 ## Number of nodes and processors per node

#PBS -l walltime=00:40:00 ## Maximum requested wall time

#PBS -l mem=10gb ## Maximum requested total memory

#PBS -M <your-email> ## Email the owner after the job is finished

#PBS -m abe ## Send the email at any occasion

## Run an external script that correctly sets the environment

## variables and loads Grex’s modules.

## For more information on modules see Grex’s website.

. ~/scripts/setenv.sh

## On many WestGrid systems a variable PBS_NP is automatically

## assigned the number of cores requested of the batch system.

## On systems where $PBS_NP is not available, one could use:

CORES=$(/bin/awk ’END {print NR}’ $PBS_NODEFILE)

echo "Running on $CORES cores"

## Announce start time

echo "Starting run at: $(date)"
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## Recommended MPI options from Petsc for running a parallel job.

NPMAX=${CORES}

MPI_BINDING=’--bysocket --bind-to-socket --report-bindings’

MPIEXEC=mpiexec

## Call the ANSLib executable, provide the correct option file,

## and finally redirect the output to a file, so that it can

## be inspected later.

${MPIEXEC} ${MPI_BINDING} -np ${CORES} \

~/code/ANSLib/hooshi/apps/solver/Solver \

-opt options/h2_p2_facet.opt \

|& tee pp_data/h2_p2_facet.out

## Announce that the job is finished.

echo "pbs/h2_p2_facet.pbs finished at: $(date)"

After a script has been created, it should be submitted for execution:

$ qsub <address of the script>

The batch job system will place the script in the execution queue, where the execution priority is
evaluated based on the the requested amount of resources.
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