A Higher-Order Unstructured Finite Volume Solver for Three-Dimensional Compressible Flows

Shayan Hoshyari
Supervisor: Dr. Carl Ollivier-Gooch

University of British Columbia

August, 2017

Computational Fluid Dynamics - Application

Optimal shape design of an Onera M6 wing (SU2)

Higher-Order Accurate Methods

- Conventional methods are second-order accurate $\left\|u-u_{h}\right\|=O\left(h^{2}\right)$

Higher-Order Accurate Methods

- Conventional methods are second-order accurate $\left\|u-u_{h}\right\|=O\left(h^{2}\right)$
- Higher-order methods can reduce computational costs

Inviscid flow around a sphere

Higher-Order Accurate Methods

- Conventional methods are second-order accurate $\left\|u-u_{h}\right\|=O\left(h^{2}\right)$
- Higher-order methods can reduce computational costs
- Unstructured finite volume methods

Higher-Order Accurate Methods

- Conventional methods are second-order accurate $\left\|u-u_{h}\right\|=O\left(h^{2}\right)$
- Higher-order methods can reduce computational costs
- Unstructured finite volume methods
- Complex geometries

Higher-Order Accurate Methods

- Conventional methods are second-order accurate $\left\|u-u_{h}\right\|=O\left(h^{2}\right)$
- Higher-order methods can reduce computational costs
- Unstructured finite volume methods
- Complex geometries
- Easier integration into FV commercial solvers

Higher-Order Accurate Methods

- Conventional methods are second-order accurate $\left\|u-u_{h}\right\|=O\left(h^{2}\right)$
- Higher-order methods can reduce computational costs
- Unstructured finite volume methods
- Complex geometries
- Easier integration into FV commercial solvers
- Smaller number of DOF compared to FEM

Higher-Order Accurate Methods

- Conventional methods are second-order accurate $\left\|u-u_{h}\right\|=O\left(h^{2}\right)$
- Higher-order methods can reduce computational costs
- Unstructured finite volume methods
- Complex geometries
- Easier integration into FV commercial solvers
- Smaller number of DOF compared to FEM
- Previous work:

Higher-Order Accurate Methods

- Conventional methods are second-order accurate $\left\|u-u_{h}\right\|=O\left(h^{2}\right)$
- Higher-order methods can reduce computational costs
- Unstructured finite volume methods
- Complex geometries
- Easier integration into FV commercial solvers
- Smaller number of DOF compared to FEM
- Previous work:
- Inviscid flow (Haider et al., 2014; Michalak and Ollivier-Gooch, 2009)

Higher-Order Accurate Methods

- Conventional methods are second-order accurate $\left\|u-u_{h}\right\|=O\left(h^{2}\right)$
- Higher-order methods can reduce computational costs
- Unstructured finite volume methods
- Complex geometries
- Easier integration into FV commercial solvers
- Smaller number of DOF compared to FEM
- Previous work:
- Inviscid flow (Haider et al., 2014; Michalak and Ollivier-Gooch, 2009)
- Laminar flow (Li, 2014; Haider et al., 2009)

Higher-Order Accurate Methods

- Conventional methods are second-order accurate $\left\|u-u_{h}\right\|=O\left(h^{2}\right)$
- Higher-order methods can reduce computational costs
- Unstructured finite volume methods
- Complex geometries
- Easier integration into FV commercial solvers
- Smaller number of DOF compared to FEM
- Previous work:
- Inviscid flow (Haider et al., 2014; Michalak and Ollivier-Gooch, 2009)
- Laminar flow (Li, 2014; Haider et al., 2009)
- 2-D turbulent flow (Jalali and Ollivier-Gooch, 2017)

Higher-Order Accurate Methods

- Conventional methods are second-order accurate $\left\|u-u_{h}\right\|=O\left(h^{2}\right)$
- Higher-order methods can reduce computational costs
- Unstructured finite volume methods
- Complex geometries
- Easier integration into FV commercial solvers
- Smaller number of DOF compared to FEM
- Previous work:
- Inviscid flow (Haider et al., 2014; Michalak and Ollivier-Gooch, 2009)
- Laminar flow (Li, 2014; Haider et al., 2009)
- 2-D turbulent flow (Jalali and Ollivier-Gooch, 2017)
- 3-D turbulent flow

Higher-Order Accurate Methods

- Conventional methods are second-order accurate $\left\|u-u_{h}\right\|=O\left(h^{2}\right)$
- Higher-order methods can reduce computational costs
- Unstructured finite volume methods
- Complex geometries
- Easier integration into FV commercial solvers
- Smaller number of DOF compared to FEM
- Previous work:
- Inviscid flow (Haider et al., 2014; Michalak and Ollivier-Gooch, 2009)
- Laminar flow (Li, 2014; Haider et al., 2009)
- 2-D turbulent flow (Jalali and Ollivier-Gooch, 2017)
- 3-D turbulent flow
- Long term goal at ANSLab:

3-D higher-order finite volume flow solver for all flow conditions

Objective

Goal: solution of 3-D inviscid and viscous turbulent benchmark flow problems

Objective

Goal: solution of 3-D inviscid and viscous turbulent benchmark flow problems

- 3-D finite volume formulation for Reynolds Averaged Navier-Stokes + Spalart-Allmaras turbulence model

Objective

Goal: solution of 3-D inviscid and viscous turbulent benchmark flow problems

- 3-D finite volume formulation for Reynolds Averaged Navier-Stokes + Spalart-Allmaras turbulence model
- Implementing the mesh preprocessing steps in 3-D (mesh curving)

Objective

Goal: solution of 3-D inviscid and viscous turbulent benchmark flow problems

- 3-D finite volume formulation for Reynolds Averaged Navier-Stokes + Spalart-Allmaras turbulence model
- Implementing the mesh preprocessing steps in 3-D (mesh curving)
- Solution of the discretized system of nonlinear equations

Objective

Goal: solution of 3-D inviscid and viscous turbulent benchmark flow problems

- 3-D finite volume formulation for Reynolds Averaged Navier-Stokes + Spalart-Allmaras turbulence model
- Implementing the mesh preprocessing steps in 3-D (mesh curving)
- Solution of the discretized system of nonlinear equations
- Verification of performance and accuracy

Finite Volume Method

- Given a set of control volumes \mathcal{T}_{h}

Finite Volume Method

- Given a set of control volumes \boldsymbol{T}_{h}
- Find $\mathbf{u}_{h}\left(\mathbf{x} ; \mathbf{U}_{h}\right)$

Finite Volume Method

- Given a set of control volumes \boldsymbol{T}_{h}
- Find $\mathbf{u}_{h}\left(\mathbf{x} ; \mathbf{U}_{h}\right)$
- $\mathbf{U}_{h} \equiv$ DOF vector \equiv control volume average values

Finite Volume Method

- Given a set of control volumes \boldsymbol{T}_{h}
- Find $\mathbf{u}_{h}\left(\mathbf{x} ; \mathbf{U}_{h}\right)$
- $\mathbf{U}_{h} \equiv$ DOF vector \equiv control volume average values
- Equations must be in the conservative form:

$$
\frac{\partial \mathbf{u}}{\partial t}+\nabla \cdot(\boldsymbol{F}(\mathbf{u})-\boldsymbol{Q}(\mathbf{u}, \nabla \mathbf{u}))=\mathbf{S}(\mathbf{u}, \nabla \mathbf{u})
$$

Finite Volume Method

Using the divergence theorem

$$
\begin{aligned}
& \frac{d \mathbf{U}_{h, \tau}}{d t}+\frac{1}{\Omega_{\tau}} \int_{\partial \tau}\left(\mathcal{F}\left(\mathbf{u}_{h}^{+}, \mathbf{u}_{h}^{-}\right)-Q\left(\mathbf{u}_{h}^{+}, \nabla \mathbf{u}_{h}^{+}, \mathbf{u}_{h}^{-}, \nabla \mathbf{u}_{h}^{-}\right)\right) d S \\
&-\frac{1}{\Omega_{\tau}} \int_{\tau} \mathbf{S}\left(\mathbf{u}_{h}, \nabla \mathbf{u}_{h}\right) d \Omega=0
\end{aligned}
$$

Finite Volume Method

Discretized system of equations

$$
\frac{d \mathbf{U}_{h}}{d t}+\mathbf{R}\left(\mathbf{U}_{h}\right)=0
$$

Finite Volume Method

Discretized system of equations

$$
\frac{d \mathbf{U}_{h}}{d t}+\mathbf{R}\left(\mathbf{U}_{h}\right)=0
$$

Building blocks

- K-exact reconstruction: Defining \mathbf{u}_{h} in terms of \mathbf{U}_{h}
- Numerical fluxes \mathcal{F} and \mathcal{Q}

RANS + Negative S-A Equations

$$
\begin{gathered}
\mathbf{u}=\left[\begin{array}{c}
\rho \\
\rho \mathbf{v} \\
E \\
\rho \tilde{v}
\end{array}\right] \quad \boldsymbol{F}=\left[\begin{array}{c}
\rho \mathbf{v}^{T} \\
\rho \mathbf{\mathbf { v } ^ { T } + P \boldsymbol { I }} \\
(E+P) \mathbf{v}^{T} \\
\tilde{v} \rho \mathbf{v}^{T}
\end{array}\right] \quad \boldsymbol{Q}=\left[\begin{array}{c}
0 \\
\boldsymbol{\tau} \\
(E+P) \boldsymbol{\tau} \mathbf{v}+\frac{R \gamma}{\gamma-1}\left(\frac{\mu}{P r}+\frac{\mu_{T}}{P_{r_{T}}}\right) \nabla T \\
-\frac{1}{\sigma}\left(\mu+\mu_{T}\right) \nabla \tilde{v}
\end{array}\right] \\
\mathbf{S}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\text { Diff }+\rho(\text { Prod }- \text { Dest }+ \text { Trip })
\end{array}\right]
\end{gathered}
$$

Euler \quad Laminar Navier-Stokes \quad RANS + S-A

K-exact reconstruction

Average values $\mathbf{U}_{h} \quad \longrightarrow \quad$ piecewise continuous $\mathbf{u}_{h}(\mathbf{x})$

K-exact reconstruction - Continued

For every control volume τ :

$$
\left.u_{h}\left(\mathbf{x} ; \mathbf{U}_{h}\right)\right|_{x \in \tau}=u_{h, \tau}\left(\mathbf{x} ; \mathbf{U}_{h}\right)=\sum_{i=1}^{N_{\text {rec }}} a_{\tau}^{i}\left(\mathbf{U}_{h}\right) \phi_{\tau}^{i}(\mathbf{x})
$$

where

$$
\begin{aligned}
& \left\{\phi_{\tau}^{i}(\mathbf{x}) \mid i=1 \ldots N_{\mathrm{rec}}\right\}= \\
& \quad\left\{\left.\frac{1}{a!b!c!}\left(x_{1}-x_{\tau 1}\right)^{a}\left(x_{2}-x_{\tau 2}\right)^{b}\left(x_{3}-x_{\tau 3}\right)^{c} \right\rvert\, a+b+c \leq k\right\} .
\end{aligned}
$$

K-exact reconstruction - Continued

- Select a specific set of each control volume's neighbors as its reconstruction stencil $\operatorname{Stencil}(\tau)$
- $|\operatorname{Stencil}(\tau)| \geq \operatorname{MinNeigh}(k) \approx 1.5 N_{\mathrm{rec}}(k)$

$$
\begin{aligned}
& k=1 \\
& k=2 \\
& k=3
\end{aligned}
$$

K-exact reconstruction - Continued

- Predict the average values of $\operatorname{Stencil}(\tau)$ members closely
- Satisfy conservation of the mean

$$
\begin{array}{ll}
\underset{a_{\tau}^{1} \ldots a_{\tau}^{N_{\text {rec }}}}{\operatorname{minimize}} & \sum_{\sigma \in \operatorname{Stencil}(\tau)}\left(\frac{1}{\Omega_{\sigma}} \int_{\sigma} u_{h, \tau}(\mathbf{x}) d \Omega-U_{h, \sigma}\right)^{2} \\
\text { subject to } & \frac{1}{\Omega_{\tau}} \int_{\tau} u_{h}(\mathbf{x}) d \Omega=U_{h, \tau}
\end{array}
$$

Numerical Flux Functions

Inviscid flux - Roe's flux function
$\mathcal{F}\left(\mathbf{u}_{h}^{+}, \mathbf{u}_{h}^{-}\right)=$approximate flux in

$$
\frac{\partial \mathbf{u}}{\partial t}+\frac{\partial \boldsymbol{F}(\mathbf{u}) \mathbf{n}}{\partial s}=0
$$

Viscous flux - averaging with damping

$$
Q\left(\mathbf{u}_{h}^{+}, \nabla \mathbf{u}_{h}^{+}, \mathbf{u}_{h}^{-}, \nabla \mathbf{u}_{h}^{-}\right)=\boldsymbol{Q}\left(\mathbf{u}_{h}^{*}, \nabla \mathbf{u}_{h}^{*}\right) \mathbf{n}
$$

where $\mathbf{u}_{h}^{*}=\frac{1}{2}\left(\mathbf{u}_{h}^{+}+\mathbf{u}_{h}^{-}\right)$
and $\nabla \mathbf{u}_{h}^{*}=\frac{1}{2}\left(\nabla \mathbf{u}_{h}^{+}+\nabla \mathbf{u}_{h}^{-}\right)+\eta\left(\frac{\mathbf{u}_{h}^{+}-\mathbf{u}_{h}^{-}}{\left\|\mathbf{x}_{\tau}+-\mathbf{x}_{\tau}-\right\|_{2}}\right) \mathbf{n}$

Mesh Curving

- Mesh boundary must match the actual geometry

Mesh Curving

- Mesh boundary must match the actual geometry
- No mesh tangling

Mesh Curving

- Mesh boundary must match the actual geometry
- No mesh tangling
- FEM elasticity solver for displacing internal mesh faces (LibMesh)

Mesh Curving - Continued

(a)

(b)

Displacement 2e-3

3e-7

Solution Scheme - PTC

- Seeking the steady state solution of:

$$
\frac{d \mathbf{U}_{h}}{d t}+\mathbf{R}\left(\mathbf{U}_{h}\right)=0
$$

Solution Scheme - PTC

- Seeking the steady state solution of:

$$
\frac{d \mathbf{U}_{h}}{d t}+\mathbf{R}\left(\mathbf{U}_{h}\right)=0
$$

- Pseudo transient continuation:

$$
\left(\frac{\boldsymbol{V}}{\Delta t}+\frac{\partial \mathbf{R}}{\partial \mathbf{U}_{h}}\right) \delta \mathbf{U}_{h}=-\mathbf{R}\left(\mathbf{U}_{h}\right)
$$

Solution Scheme - PTC

- Seeking the steady state solution of:

$$
\frac{d \mathbf{U}_{h}}{d t}+\mathbf{R}\left(\mathbf{U}_{h}\right)=0
$$

- Pseudo transient continuation:

$$
\left(\frac{\boldsymbol{V}}{\Delta t}+\frac{\partial \mathbf{R}}{\partial \mathbf{U}_{h}}\right) \delta \mathbf{U}_{h}=-\mathbf{R}\left(\mathbf{U}_{h}\right)
$$

- A linear system must be solved:

$$
A \mathbf{x}=\mathbf{b}
$$

Solution Scheme - GMRES

- Generalized minimal residual method (GMRES)

Solution Scheme - GMRES

- Generalized minimal residual method (GMRES)
- Finds $\mathbf{x}^{(k)} \in \operatorname{Span}\left\{\mathbf{b}, \boldsymbol{A b}, \boldsymbol{A}^{2} \mathbf{b}, \cdots, \boldsymbol{A}^{k-1} \mathbf{b}\right\}$

Solution Scheme - GMRES

- Generalized minimal residual method (GMRES)
- Finds $\mathbf{x}^{(k)} \in \operatorname{Span}\left\{\mathbf{b}, \boldsymbol{A} \mathbf{b}, \boldsymbol{A}^{2} \mathbf{b}, \cdots, \boldsymbol{A}^{k-1} \mathbf{b}\right\}$
- That minimizes $\left\|\boldsymbol{A} \mathbf{x}^{(k)}-\mathbf{b}\right\|_{2}$

Solution Scheme - GMRES

- Generalized minimal residual method (GMRES)
- Finds $\mathbf{x}^{(k)} \in \operatorname{Span}\left\{\mathbf{b}, \boldsymbol{A} \mathbf{b}, \boldsymbol{A}^{2} \mathbf{b}, \cdots, \boldsymbol{A}^{k-1} \mathbf{b}\right\}$
- That minimizes $\left\|\boldsymbol{A} \mathbf{x}^{(k)}-\mathbf{b}\right\|_{2}$

Solution Scheme - GMRES

- Generalized minimal residual method (GMRES)
- Finds $\mathbf{x}^{(k)} \in \operatorname{Span}\left\{\mathbf{b}, \boldsymbol{A} \mathbf{b}, \boldsymbol{A}^{2} \mathbf{b}, \cdots, \boldsymbol{A}^{k-1} \mathbf{b}\right\}$
- That minimizes $\left\|\boldsymbol{A} \mathbf{x}^{(k)}-\mathbf{b}\right\|_{2}$

Solution Scheme - GMRES

- Generalized minimal residual method (GMRES)
- Finds $\mathbf{x}^{(k)} \in \operatorname{Span}\left\{\mathbf{b}, \boldsymbol{A} \mathbf{b}, \boldsymbol{A}^{2} \mathbf{b}, \cdots, \boldsymbol{A}^{k-1} \mathbf{b}\right\}$
- That minimizes $\left\|\boldsymbol{A} \mathbf{x}^{(k)}-\mathbf{b}\right\|_{2}$

Solution Scheme - GMRES

- Generalized minimal residual method (GMRES)
- Finds $\mathbf{x}^{(k)} \in \operatorname{Span}\left\{\mathbf{b}, \boldsymbol{A} \mathbf{b}, \boldsymbol{A}^{2} \mathbf{b}, \cdots, \boldsymbol{A}^{k-1} \mathbf{b}\right\}$
- That minimizes $\left\|\boldsymbol{A} \mathbf{x}^{(k)}-\mathbf{b}\right\|_{2}$

Solution Scheme - GMRES

- Generalized minimal residual method (GMRES)
- Finds $\mathbf{x}^{(k)} \in \operatorname{Span}\left\{\mathbf{b}, \boldsymbol{A} \mathbf{b}, \boldsymbol{A}^{2} \mathbf{b}, \cdots, \boldsymbol{A}^{k-1} \mathbf{b}\right\}$
- That minimizes $\left\|\boldsymbol{A} \mathbf{x}^{(k)}-\mathbf{b}\right\|_{2}$
- Preconditioning $\boldsymbol{A P y}=\mathbf{b}, \quad \mathbf{x}=\boldsymbol{P} \mathbf{y}$

Solution Scheme - GMRES

- Generalized minimal residual method (GMRES)
- Finds $\mathbf{x}^{(k)} \in \operatorname{Span}\left\{\mathbf{b}, \boldsymbol{A} \mathbf{b}, \boldsymbol{A}^{2} \mathbf{b}, \cdots, \boldsymbol{A}^{k-1} \mathbf{b}\right\}$
- That minimizes $\left\|\boldsymbol{A} \mathbf{x}^{(k)}-\mathbf{b}\right\|_{2}$
- Preconditioning $\boldsymbol{A P} \mathbf{y}=\mathbf{b}, \quad \mathbf{x}=\boldsymbol{P} \mathbf{y}$
- Incomplete LU factorization; fill level p

Solution Scheme - GMRES

- Generalized minimal residual method (GMRES)
- Finds $\mathbf{x}^{(k)} \in \operatorname{Span}\left\{\mathbf{b}, \boldsymbol{A} \mathbf{b}, \boldsymbol{A}^{2} \mathbf{b}, \cdots, \boldsymbol{A}^{k-1} \mathbf{b}\right\}$
- That minimizes $\left\|\boldsymbol{A} \mathbf{x}^{(k)}-\mathbf{b}\right\|_{2}$
- Preconditioning $\boldsymbol{A P y}=\mathbf{b}, \quad \mathbf{x}=\boldsymbol{P} \mathbf{y}$
- Incomplete LU factorization; fill level p
- $\boldsymbol{A}^{*} \approx \tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}}$

Solution Scheme - GMRES

- Generalized minimal residual method (GMRES)
- Finds $\mathbf{x}^{(k)} \in \operatorname{Span}\left\{\mathbf{b}, \boldsymbol{A} \mathbf{b}, \boldsymbol{A}^{2} \mathbf{b}, \cdots, \boldsymbol{A}^{k-1} \mathbf{b}\right\}$
- That minimizes $\left\|\boldsymbol{A} \mathbf{x}^{(k)}-\mathbf{b}\right\|_{2}$
- Preconditioning $\boldsymbol{A P} \mathbf{y}=\mathbf{b}, \quad \mathbf{x}=\boldsymbol{P} \mathbf{y}$
- Incomplete LU factorization; fill level p
- $\boldsymbol{A}^{*} \approx \tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}}$

Solution Scheme - GMRES

- Generalized minimal residual method (GMRES)
- Finds $\mathbf{x}^{(k)} \in \operatorname{Span}\left\{\mathbf{b}, \boldsymbol{A b}, \boldsymbol{A}^{2} \mathbf{b}, \cdots, \boldsymbol{A}^{k-1} \mathbf{b}\right\}$
- That minimizes $\left\|\boldsymbol{A} \mathbf{x}^{(k)}-\mathbf{b}\right\|_{2}$
- Preconditioning $\boldsymbol{A P} \mathbf{y}=\mathbf{b}, \quad \mathbf{x}=\boldsymbol{P} \mathbf{y}$
- Incomplete LU factorization; fill level p
- $\boldsymbol{A}^{*} \approx \tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}}$
- $P=(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})^{-1}($ to find $\mathbf{v}=\boldsymbol{P} \mathbf{z}$, solve $(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}}) \mathbf{v}=\mathbf{z})$

Solution Scheme - GMRES

- Generalized minimal residual method (GMRES)
- Finds $\mathbf{x}^{(k)} \in \operatorname{Span}\left\{\mathbf{b}, \boldsymbol{A} \mathbf{b}, \boldsymbol{A}^{2} \mathbf{b}, \cdots, \boldsymbol{A}^{k-1} \mathbf{b}\right\}$
- That minimizes $\left\|\boldsymbol{A} \mathbf{x}^{(k)}-\mathbf{b}\right\|_{2}$
- Preconditioning $\boldsymbol{A P y}=\mathbf{b}, \quad \mathbf{x}=\boldsymbol{P} \mathbf{y}$
- Incomplete LU factorization; fill level p
- $\boldsymbol{A}^{*} \approx \tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}}$
- $P=(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})^{-1}($ to find $\mathbf{v}=\boldsymbol{P} \mathbf{z}$, solve $(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}}) \mathbf{v}=\mathbf{z})$
- Reordering

Solution Scheme - Preconditioning

- HO-ILU p (Jalali and Ollivier-Gooch, 2017)

Solution Scheme - Preconditioning

- HO-ILU p (Jalali and Ollivier-Gooch, 2017)
- $\boldsymbol{A} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})($ fill level $p \geq 3)$

Solution Scheme - Preconditioning

- HO-ILU p (Jalali and Ollivier-Gooch, 2017)
- $\boldsymbol{A} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})($ fill level $p \geq 3)$
- Memory consuming

Solution Scheme - Preconditioning

- HO-ILU p (Jalali and Ollivier-Gooch, 2017)
- $\boldsymbol{A} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})($ fill level $p \geq 3)$
- Memory consuming
- LO-ILUp: (Nejat and Ollivier-Gooch, 2008; Wong and Zingg, 2008)

Solution Scheme - Preconditioning

- HO-ILU p (Jalali and Ollivier-Gooch, 2017)
- $\boldsymbol{A} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})($ fill level $p \geq 3)$
- Memory consuming
- LO-ILUp: (Nejat and Ollivier-Gooch, 2008; Wong and Zingg, 2008)
- $\boldsymbol{A}^{*} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})$

Solution Scheme - Preconditioning

- HO-ILU p (Jalali and Ollivier-Gooch, 2017)
- $\boldsymbol{A} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})($ fill level $p \geq 3)$
- Memory consuming
- LO-ILUp: (Nejat and Ollivier-Gooch, 2008; Wong and Zingg, 2008)
- $\boldsymbol{A}^{*} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})$
- \boldsymbol{A}^{*} is $k=0$ LHS matrix

Solution Scheme - Preconditioning

- HO-ILU p (Jalali and Ollivier-Gooch, 2017)
- $\boldsymbol{A} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})($ fill level $p \geq 3)$
- Memory consuming
- LO-ILUp: (Nejat and Ollivier-Gooch, 2008; Wong and Zingg, 2008)
- $\boldsymbol{A}^{*} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})$
- \boldsymbol{A}^{*} is $k=0$ LHS matrix
- Can be insufficient for $k=3$

Solution Scheme - Preconditioning

- HO-ILU p (Jalali and Ollivier-Gooch, 2017)
- $\boldsymbol{A} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})($ fill level $p \geq 3)$
- Memory consuming
- LO-ILUp: (Nejat and Ollivier-Gooch, 2008; Wong and Zingg, 2008)
- $\boldsymbol{A}^{*} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})$
- \boldsymbol{A}^{*} is $k=0$ LHS matrix
- Can be insufficient for $k=3$
- GMRES-LO-ILU p : (this thesis)

Solution Scheme - Preconditioning

- HO-ILU p (Jalali and Ollivier-Gooch, 2017)
- $\boldsymbol{A} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})($ fill level $p \geq 3)$
- Memory consuming
- LO-ILUp: (Nejat and Ollivier-Gooch, 2008; Wong and Zingg, 2008)
- $\boldsymbol{A}^{*} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})$
- \boldsymbol{A}^{*} is $k=0$ LHS matrix
- Can be insufficient for $k=3$
- GMRES-LO-ILU p : (this thesis)
- Imitates $\boldsymbol{P}()=.\left(A^{*}\right)^{-1}($.

Solution Scheme - Preconditioning

- HO-ILU p (Jalali and Ollivier-Gooch, 2017)
- $\boldsymbol{A} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})($ fill level $p \geq 3)$
- Memory consuming
- LO-ILUp: (Nejat and Ollivier-Gooch, 2008; Wong and Zingg, 2008)
- $\boldsymbol{A}^{*} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})$
- \boldsymbol{A}^{*} is $k=0$ LHS matrix
- Can be insufficient for $k=3$
- GMRES-LO-ILU p : (this thesis)
- Imitates $\boldsymbol{P}()=.\left(A^{*}\right)^{-1}($.
- Solve $\left(A^{*}\right)\{\boldsymbol{P}()\}=$. (.) using ILU preconditioned GMRES

Solution Scheme - Preconditioning

- HO-ILU p (Jalali and Ollivier-Gooch, 2017)
- $\boldsymbol{A} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})($ fill level $p \geq 3)$
- Memory consuming
- LO-ILUp: (Nejat and Ollivier-Gooch, 2008; Wong and Zingg, 2008)
- $\boldsymbol{A}^{*} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})$
- \boldsymbol{A}^{*} is $k=0$ LHS matrix
- Can be insufficient for $k=3$
- GMRES-LO-ILU p : (this thesis)
- Imitates $\boldsymbol{P}()=.\left(A^{*}\right)^{-1}($.
- Solve $\left(A^{*}\right)\{\boldsymbol{P}()\}=$. (.) using ILU preconditioned GMRES
- ILU reordering

Solution Scheme - Preconditioning

- HO-ILU p (Jalali and Ollivier-Gooch, 2017)
- $\boldsymbol{A} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})($ fill level $p \geq 3)$
- Memory consuming
- LO-ILUp: (Nejat and Ollivier-Gooch, 2008; Wong and Zingg, 2008)
- $\boldsymbol{A}^{*} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})$
- \boldsymbol{A}^{*} is $k=0$ LHS matrix
- Can be insufficient for $k=3$
- GMRES-LO-ILUp: (this thesis)
- Imitates $\boldsymbol{P}()=.\left(A^{*}\right)^{-1}($.
- Solve $\left(A^{*}\right)\{\boldsymbol{P}()\}=$. (.) using ILU preconditioned GMRES
- ILU reordering
- RCM (minimizes fill of \boldsymbol{A}^{*})

Solution Scheme - Preconditioning

- HO-ILU p (Jalali and Ollivier-Gooch, 2017)
- $\boldsymbol{A} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})($ fill level $p \geq 3)$
- Memory consuming
- LO-ILUp: (Nejat and Ollivier-Gooch, 2008; Wong and Zingg, 2008)
- $\boldsymbol{A}^{*} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})$
- \boldsymbol{A}^{*} is $k=0$ LHS matrix
- Can be insufficient for $k=3$
- GMRES-LO-ILUp: (this thesis)
- Imitates $\boldsymbol{P}()=.\left(A^{*}\right)^{-1}($.
- Solve $\left(A^{*}\right)\{\boldsymbol{P}()\}=$. (.) using ILU preconditioned GMRES
- ILU reordering
- RCM (minimizes fill of \boldsymbol{A}^{*})
- QMD (minimizes fill of $\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}}$)

Solution Scheme - Preconditioning

- HO-ILU p (Jalali and Ollivier-Gooch, 2017)
- $\boldsymbol{A} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})($ fill level $p \geq 3)$
- Memory consuming
- LO-ILUp: (Nejat and Ollivier-Gooch, 2008; Wong and Zingg, 2008)
- $\boldsymbol{A}^{*} \simeq(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})$
- \boldsymbol{A}^{*} is $k=0$ LHS matrix
- Can be insufficient for $k=3$
- GMRES-LO-ILUp: (this thesis)
- Imitates $\boldsymbol{P}()=.\left(A^{*}\right)^{-1}($.
- Solve $\left(A^{*}\right)\{\boldsymbol{P}()\}=$. (.) using ILU preconditioned GMRES
- ILU reordering
- RCM (minimizes fill of \boldsymbol{A}^{*})
- QMD (minimizes fill of $\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}}$)
- Lines of strong coupling between unknowns (this thesis)

Solution Scheme - Lines of Strong Unknown Coupling

Solution Scheme - Results

- $k=3$
- 2-D turbulent flow over NACA 0012
- $R e=6 \times 10^{6}, M a=0.15, \alpha=10^{\circ}$
- Mixed mesh with $N_{\mathrm{CV}}=100 \mathrm{~K}$ and $N_{\mathrm{CV}}=25 \mathrm{~K}$

Case name	Preconditioning method	Reordering algorithm	Used in higher-order FV
A	HO-ILU3	QMD	(Jalali and Ollivier-Gooch, 2017)
B	LO-ILU0	RCM	(Nejat and Ollivier-Gooch, 2008)
C	LO-ILU0	lines	This thesis
D	GMRES-LO-ILU0	RCM	This thesis
E	GMRES-LO-ILU0	lines	This thesis

Solution Scheme - Results

Comparison of residual histories

Inviscid Flow Around Sphere

- $M a=0.38$
- $N_{\mathrm{CV}}=64 \mathrm{~K}, 322 \mathrm{~K}, 1 \mathrm{M}$

Inviscid Flow Around Sphere - Entropy Norm

Subsonic flow $\longrightarrow\left\|S-S_{\infty}\right\|_{2}=0$

Turbulent Flow Over a Flat Plate

- $R e=5 \times 10^{6}$
- $M a=0.2$
- Nested meshes: $60 \times 34 \times 7,120 \times 68 \times 14$, and $240 \times 136 \times 28$

$\begin{array}{cc}\text { Adiabatic wall. } & \bigcirc \\ \text { Symmetry } & \bigcirc \\ \text { Inflow/outflow } & \bigcirc\end{array}$

Turbulent Flow Over a Flat Plate - Verification

Distribution of the turbulence working variable on the plane $x_{3}=0.5$

Turbulent Flow Over a Flat Plate - Verification

Eddy viscosity on the line $\left(x_{1}=0.97\right) \wedge\left(x_{3}=0.5\right)$

Turbulent Flow Over an Extruded NACA 0012

- Extrusion length $=1$ in x_{3} direction
- $R e=6 \times 10^{6}, M a=0.15, \alpha=10^{\circ}, \psi=0$
- Hex mesh with $N_{\mathrm{CV}}=100 \mathrm{~K}$ and mixed mesh with $N_{\mathrm{CV}}=176 \mathrm{~K}$

Extruded NACA 0012 - Convergence

- Norm of the residual vector per PTC iteration
- Order ramping
- Convergence only slightly affected by mesh type or k

Extruded NACA 0012 - Verification

Surface pressure coefficient at $x_{3}=0.5$

Summary

- Derived the k-exact finite volume formulation of the RANS + negative S-A equations in 3-D.

Summary

- Derived the k-exact finite volume formulation of the RANS + negative S-A equations in 3-D.
- Developed a 3-D linear elasticity solver to prevent mesh tangling.

Summary

- Derived the k-exact finite volume formulation of the RANS + negative S-A equations in 3-D.
- Developed a 3-D linear elasticity solver to prevent mesh tangling.
- Designed an efficient solution scheme.

Summary

- Derived the k-exact finite volume formulation of the RANS + negative S -A equations in 3-D.
- Developed a 3-D linear elasticity solver to prevent mesh tangling.
- Designed an efficient solution scheme.
- Lines of strong coupling between unknowns.

Summary

- Derived the k-exact finite volume formulation of the RANS + negative S -A equations in 3-D.
- Developed a 3-D linear elasticity solver to prevent mesh tangling.
- Designed an efficient solution scheme.
- Lines of strong coupling between unknowns.
- Inner GMRES iterations based on the $k=0$ scheme.

Summary

- Derived the k-exact finite volume formulation of the RANS + negative S -A equations in 3-D.
- Developed a 3-D linear elasticity solver to prevent mesh tangling.
- Designed an efficient solution scheme.
- Lines of strong coupling between unknowns.
- Inner GMRES iterations based on the $k=0$ scheme.
- Verified the developed solver for benchmark problems.

References I

Bassi, F. and Rebay, S. (1997). High-order accurate discontinuous finite element solution of the 2D Euler equations. Journal of Computational Physics, 138(2):251-285.
Haider, F., Brenner, P., Courbet, B., and Croisille, J.-P. (2014). Parallel implementation of k-exact finite volume reconstruction on unstructured grids. In High-Order Nonlinear Numerical Schemes for Evolutionary PDEs, pages 59-75. Springer.
Haider, F., Croisille, J.-P., and Courbet, B. (2009). Stability analysis of the cell centered finite-volume Muscl method on unstructured grids. Numerische Mathematik, 113(4):555-600.
Jalali, A. and Ollivier-Gooch, C. (2017). Higher-order unstructured finite volume RANS solution of turbulent compressible flows. Computers and Fluids, 143:32-47.
Li, W. (2014). Efficient Implementation of High-Order Accurate Numerical Methods on Unstructured Grids. Springer.

Michalak, C. and Ollivier-Gooch, C. (2009). Accuracy preserving limiter for the high-order accurate solution of the Euler equations. Journal of Computational Physics, 228(23):8693-8711.

Nejat, A. and Ollivier-Gooch, C. (2008). Effect of discretization order on preconditioning and convergence of a high-order unstructured Newton-GMRES solver for the Euler equations. Journal of Computational Physics, 227(4):2366-2386.

References II

Ollivier-Gooch, C. F. and Van Altena, M. (2002). A high-order accurate unstructured mesh finite-volume scheme for the advection-diffusion equation. Journal of Computational Physics, 181(2):729-752.

Wong, P. and Zingg, D. W. (2008). Three-dimensional aerodynamic computations on unstructured grids using a Newton-Krylov approach. Computers and Fluids, 37(2):107-120.

FV vs DG

Inviscid flow around a circle (Bassi and Rebay, 1997)

Common Goal

- Given a PDE $\mathcal{L} \mathbf{u}(\mathbf{x})=0$
- Find a discrete solution $\mathbf{u}_{h}\left(\mathbf{x} ; \mathbf{U}_{h}\right)$
- Such that the discretization error $\mathbf{e}_{h}=\mathbf{u}_{h}-\mathbf{u}$
- Has an asymptotic behavior $\left\|\mathbf{e}_{h}\right\|=O\left(h^{p}\right)$

The method is said to be p th-order accurate.
Traditional methods are second-order accurate.

Higher-Order Methods - Advantages

Reduction of computational costs.

- When modeling errors are dominant:
- Limited level of reduction in discretization error is of interest.
- $h p$-adaptive methods.
- When numerical errors are dominant:
- E.g., complicated full-body aircraft geometries.
- E.g., advanced turbulence modeling schemes.
- More accurate solution are valuable (1% better accuracy in finding drag).
- Accurate solutions can be obtained on coarser meshes.
- Unstructured finite volume methods
- Complex geometries
- Fewer number of degrees of freedom.
- Easier integration into commercial solvers.

K-exact reconstruction - Continued

- Satisfy conservation of the mean.
- Predict the average values of Stencil(τ) closely.

$$
\begin{array}{ll}
\underset{a_{\tau}^{1} \ldots a_{\tau}^{N} \mathrm{rec}}{\operatorname{minimize}} & \sum_{\sigma \in \operatorname{Stencil(\tau)}}\left(\frac{1}{\Omega_{\sigma}} \int_{\sigma} u_{h, \tau}(\mathbf{x}) d \Omega-U_{h, \sigma}\right)^{2} \\
\text { subject to } & \frac{1}{\Omega_{\tau}} \int_{\tau} u_{h}(\mathbf{x}) d \Omega=U_{h, \tau}
\end{array}
$$

K-exact reconstruction - Continued

- Satisfy conservation of the mean.
- Predict the average values of $\operatorname{Stencil}(\tau)$ closely.

$$
\begin{aligned}
& I_{\tau \sigma}^{i}=\int_{\sigma} \phi_{\tau}^{i}(\mathbf{x}) d \Omega \quad \sigma \in \operatorname{Stencil}(\tau) \cup\{\tau\} \\
& {\left[\begin{array}{ccc}
I_{\tau \tau}^{1} & \ldots & I_{\tau \tau}^{N_{\mathrm{rec}}} \\
\hline I_{\tau \sigma_{1}}^{1} & \ldots & I_{\tau \sigma_{1}}^{N_{\mathrm{rec}}} \\
\vdots & \ddots & \vdots \\
I_{\tau \sigma_{\mathrm{NS}(\tau)}}^{1} & \ldots & I_{\tau \sigma_{\mathrm{NS}(\tau)}}^{N_{\mathrm{rec}}}
\end{array}\right]\left[\begin{array}{c}
a_{\tau}^{1} \\
\vdots \\
a_{\tau}^{N_{\mathrm{rec}}}
\end{array}\right]=\left[\begin{array}{c}
U_{h, \tau} \\
U_{h, \sigma_{1}} \\
\vdots \\
U_{h, \sigma_{\mathrm{NS}(\tau)}}
\end{array}\right]}
\end{aligned}
$$

K-exact reconstruction - Continued

- Satisfy conservation of the mean.
- Predict the average values of $\operatorname{Stencil}(\tau)$ closely.

$$
\left[\begin{array}{c}
a_{\tau}^{1} \\
\vdots \\
a_{\tau}^{N_{\mathrm{rec}}}
\end{array}\right]=\boldsymbol{A}_{\tau}^{\dagger}\left[\begin{array}{c}
U_{h, \tau} \\
U_{h, \sigma_{1}} \\
\vdots \\
U_{h, \sigma_{\mathrm{NS}(\tau)}}
\end{array}\right]
$$

Reconstruction Optimization Problem

- $A x=b$ subject to $B x=0$
- Change of variables $x=B y$ where the columns of B are the null space of A.
- $A x=0$ reduces to $(A B=C) y=0$ which is always satisfied.
- Solve the unconstrained problem $C y=b$, i.e., $y=C^{\dagger} b$
- QR (Householder or Gram-schmidt): $C=Q_{1} R_{1}, C^{\dagger}=R_{1}^{-1} Q^{T}$
- SVD (most stable): $C=U \Sigma V^{T}, C^{\dagger}=W^{T} \Sigma^{-1} U$
- Normal equations: $C^{\dagger}=\left(C C^{T}\right)^{-1} C^{T}$
- Finally, $x=B y$.

Numerical Flux Functions

Inviscid Flux - Roe's Flux Function

$\mathcal{F}\left(\mathbf{u}_{h}^{+}, \mathbf{u}_{h}^{-}\right)=$approximate solution for $\boldsymbol{F}(s=0) \mathbf{n}$ in

$$
\left\{\begin{array}{l}
\frac{\partial \mathbf{u}}{\partial t}+\frac{\partial \boldsymbol{F}(\mathbf{u}) \mathbf{n}}{\partial s}=0 \\
\mathbf{u}(s<0, t=0)=u_{h}^{-} \\
\mathbf{u}(s>0, t=0)=u_{h}^{+}
\end{array}\right.
$$

Inviscid Flux - Averaging with Damping
$Q\left(\mathbf{u}_{h}^{+}, \nabla \mathbf{u}_{h}^{+}, \mathbf{u}_{h}^{-}, \nabla \mathbf{u}_{h}^{-}\right)=\boldsymbol{Q}\left(\mathbf{u}_{h}^{*}, \nabla \mathbf{u}_{h}^{*}\right) \mathbf{n}$,
where $\mathbf{u}_{h}^{*}=\frac{1}{2}\left(\mathbf{u}_{h}^{+}+\mathbf{u}_{h}^{-}\right)$,
and $\nabla \mathbf{u}_{h}^{*}=\frac{1}{2}\left(\nabla \mathbf{u}_{h}^{+}+\nabla \mathbf{u}_{h}^{-}\right)+\eta\left(\frac{\mathbf{u}_{h}^{+}-\mathbf{u}_{h}^{-}}{\left\|\mathbf{x}_{\tau}-\mathbf{x}_{\tau}-\right\|_{2}}\right) \mathbf{n}$

Parallel Scaling

Strong Scaling Test

- Solving the same problem with different number of processors
- Inviscid flow, sphere: $N_{\mathrm{CV}}=322 \mathrm{~K}$ and $k=3$
- Turbulent flow, flat plate: $128 \times 68 \times 14$ mesh and $k=3$

Sphere

Flat plate

Nondimensionalization - Flow Variables

Reference values:

$$
\begin{array}{cccc}
\rho^{*} \sim \rho_{\infty} & \mathbf{v}^{*} \sim c_{\infty} & T^{*} \sim \frac{c_{\infty}}{\gamma R} & P^{*} \sim \rho_{\infty} c_{\infty}^{2} \\
t^{*} \sim \frac{L}{c_{\infty}} & \mu^{*} \sim \mu_{\infty} & \mu_{T}^{*} \sim \mu_{\infty} & v_{T}^{*} \sim \frac{\mu_{\infty}}{\rho_{\infty}} \\
\tilde{v}^{*} \sim \mu^{\prime} & \boldsymbol{\tau} \sim \frac{\mu_{\infty} c_{\infty}}{L} & d \sim L &
\end{array}
$$

Pressure and temperature:

$$
\begin{array}{ccc}
c^{*}=\sqrt{\frac{\gamma P^{*}}{\rho^{*}}} & \Rightarrow & c=\sqrt{\frac{\gamma P}{\rho}} \\
P^{*}=\rho^{*} R T^{*} & \Rightarrow & P=\frac{\rho T}{\gamma} \\
E^{*}=\rho \frac{R(\gamma-1)}{\gamma} T+\frac{1}{2}\left(\mathbf{v}^{*} \cdot \mathbf{v}^{*}\right) & \Rightarrow P=(\gamma-1)\left(E-\frac{1}{2} \rho(\mathbf{v} \cdot \mathbf{v})\right)
\end{array}
$$

Dimensionless numbers:

$$
M a=\frac{v_{\infty}}{c_{\infty}} \quad \operatorname{Re}=\frac{\rho_{\infty} v_{\infty} L}{\mu_{\infty}} \quad \operatorname{Pr}=\frac{c_{p} \mu}{k}
$$

Nondimensionalization — Lift and Drag

Pressure Force $\sim \rho_{\infty} c_{\infty}^{2} L^{2}$
Viscous Force $\sim \mu_{\infty} c_{\infty} L^{2}$

$$
\begin{aligned}
C_{D} & =\frac{D^{*}}{(1 / 2) \rho_{\infty} v_{\infty}^{2} A} \Rightarrow C_{D}=\frac{D}{(1 / 2) M a^{2}\left(A / L^{2}\right)} \\
C_{D v} & =\frac{D^{*}}{(1 / 2) \rho_{\infty} v_{\infty}^{2} A} \Rightarrow C_{D v}=\frac{D}{(1 / 2) M a \operatorname{Re}\left(A / L^{2}\right)} \\
C_{f} & =\frac{\mathbf{m}^{T} \boldsymbol{\tau}^{*} \mathbf{n}}{(1 / 2) \rho^{*} v_{\infty}^{2} A} \Rightarrow C_{f}=\frac{\mathbf{m}^{T} \boldsymbol{\tau} \mathbf{n}}{(1 / 2) \rho M a \operatorname{Re}\left(A / L^{2}\right)}
\end{aligned}
$$

Nondimensionalization - Sutherland's Law

$$
\begin{gathered}
\frac{\mu^{*}}{\mu_{r e f}}=\left(\frac{T^{*}}{T_{r e f}}\right)^{3 / 2} \frac{1+\left(S^{*} / T_{r e f}\right)}{\left(T^{*} / T_{r e f}\right)+\left(S^{*} / T_{r e f}\right)} \\
\mu=T \frac{\mu_{\infty}}{\mu_{r e f}} \frac{\left(T_{r e f} / T_{\infty}\right)+S}{T+S} \\
S=110.4 K \quad T_{\text {ref }}=273.15 K \quad \mu_{r e f}=1.716 \times 10^{-5}
\end{gathered}
$$

Nondimensionalization - Flux Matrices

$$
\begin{gathered}
\boldsymbol{F}^{*}=\left[\begin{array}{c}
\rho^{*} \mathbf{v}^{* T} \\
\rho^{*} \mathbf{v}^{*} \mathbf{v}^{* T}+P^{*} \boldsymbol{I} \\
\left(E^{*}+P^{*}\right) \mathbf{v}^{* T} \\
\tilde{v}^{*} \rho^{*} \mathbf{v}^{* T}
\end{array}\right] \boldsymbol{Q}^{*}=\left[\begin{array}{c}
0 \\
\boldsymbol{\tau}^{*} \\
\left(E^{*}+P^{*}\right) \boldsymbol{\tau}^{*} \mathbf{v}^{*}+\frac{R \gamma}{\gamma-1}\left(\frac{\mu^{*}}{P r}+\frac{\mu_{T}^{*}}{P_{r}}\right) \nabla T^{*} \\
-\frac{1}{\sigma}\left(\mu^{*}+\mu_{T}^{*}\right) \nabla \tilde{v}^{*}
\end{array}\right] \\
\boldsymbol{F}=\left[\begin{array}{c}
\rho \mathbf{v}^{T} \\
\rho \mathbf{v}^{T}+P \mathbf{I} \\
(E+P) \mathbf{v}^{T} \\
\tilde{\boldsymbol{v}} \rho \mathbf{v}^{T}
\end{array}\right] \quad \boldsymbol{Q}=\left[\begin{array}{c}
0 \\
\frac{M a}{R_{e} \boldsymbol{\tau}} \\
(E+P) \boldsymbol{\tau} \mathbf{v}+\frac{1}{\gamma-1}\left(\frac{\mu}{P_{r}}+\frac{\mu_{T}}{P_{r} r_{T}}\right) \nabla T \\
-\frac{M a}{R e \sigma}\left(\mu+\mu_{T}\right) \nabla \tilde{v}
\end{array}\right]
\end{gathered}
$$

Solution Scheme - PTC

- Seeking the steady state solution of:

$$
\frac{d \mathbf{U}_{h}}{d t}+\mathbf{R}\left(\mathbf{U}_{h}\right)=0
$$

- Newton:

$$
\frac{\partial \mathbf{R}}{\partial \mathbf{U}_{h}} \delta \mathbf{U}_{h}=-\mathbf{R}\left(\mathbf{U}_{h}\right), \quad \mathbf{U}_{h} \leftarrow \mathbf{U}_{\mathbf{h}}+\delta \mathbf{U}_{\mathbf{h}}
$$

- Backward Euler:

$$
\frac{\mathbf{U}_{h}^{+}-\mathbf{U}_{h}}{\Delta t}+\mathbf{R}\left(\mathbf{U}_{h}\right)=0
$$

- Pseudo transient continuation:

$$
\left(\frac{\boldsymbol{V}}{\Delta t}+\frac{\partial \mathbf{R}}{\partial \mathbf{U}_{h}}\right) \delta \mathbf{U}_{h}=-\mathbf{R}\left(\mathbf{U}_{h}\right)
$$

- A linear system must be solved:

$$
\boldsymbol{A x}=\mathbf{b} \quad(*)
$$

Solution Scheme - Preconditioning

- GMRES can stall
- Right preconditioning $\quad \boldsymbol{A P y}=\mathbf{b}, \quad \mathbf{x}=\boldsymbol{P y}$
- Incomplete LU factorization; fill level p
- $\boldsymbol{A}^{*} \approx \tilde{L} \tilde{U}$
- $P=(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})^{-1}$ (to find $\mathbf{v}=\boldsymbol{P} \mathbf{z}$, solve $(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}}) \mathbf{v}=\mathbf{z}$)
- Reordering $\boldsymbol{\sigma A} \boldsymbol{\sigma}^{\boldsymbol{T}} \boldsymbol{P y}=\sigma \mathbf{b}$

Solution Scheme - Preconditioning

- GMRES can stall
- Right preconditioning $\quad \boldsymbol{A P y}=\mathbf{b}, \quad \mathbf{x}=\boldsymbol{P} \mathbf{y}$
- Incomplete LU factorization; fill level p
- $\boldsymbol{A}^{*} \approx \tilde{L} \tilde{U}$
- $P=(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})^{-1}$ (to find $\mathbf{v}=\boldsymbol{P} \mathbf{z}$, solve $(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}}) \mathbf{v}=\mathbf{z}$)
- Reordering $\boldsymbol{\sigma A} \boldsymbol{\sigma}^{\boldsymbol{T}} \boldsymbol{P y}=\sigma \mathbf{b}$

Solution Scheme - Preconditioning

- GMRES can stall
- Right preconditioning $\quad \boldsymbol{A P y}=\mathbf{b}, \quad \mathbf{x}=\boldsymbol{P y}$
- Incomplete LU factorization; fill level p
- $\boldsymbol{A}^{*} \approx \tilde{L} \tilde{U}$
- $P=(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}})^{-1}$ (to find $\mathbf{v}=\boldsymbol{P} \mathbf{z}$, solve $(\tilde{\boldsymbol{L}} \tilde{\boldsymbol{U}}) \mathbf{v}=\mathbf{z}$)
- Reordering $\boldsymbol{\sigma A} \boldsymbol{\sigma}^{\boldsymbol{T}} \boldsymbol{P y}=\sigma \mathbf{b}$

Solution Scheme - Lines of Strong Unknown Coupling

- Assign binary weights $W_{\tau \sigma}$.
- Advection-diffusion equation $\nabla \cdot\left(\mathbf{v} u-\mu_{L} \nabla u\right)=0$.
- $W_{\tau \sigma}=\max \left(\frac{\partial R_{\sigma}}{\partial u_{\tau}}, \frac{\partial R_{\tau}}{\partial u_{\sigma}}\right)$
- Greedy clustering algorithm
(1) Pick an unmarked control volume τ
(2) Pick the neighbour σ with the highest weight
(3) If σ is marked go to 1 .
(4) Add σ to line and mark it.
(5) $\tau=\sigma$, go to 2 .

Solution Scheme - Comparison Details

Preconditioner	N-PTC	N-GMRES	Memory(GB)	LST(s)	TST(s)
$N_{\mathrm{CV}}=25 \mathrm{~K}$					
A	37	956	1.4	416	635
B	44	10,893	0.7	264	572
C	51	13,692	0.7	328	705
D	34	1,856	0.7	134	379
E	34	1,787	0.7	118	361
$N_{\mathrm{CV}}=100 \mathrm{~K}$					
A	39	4,640	5.9	3,122	4,068
B	-	-	2.8	-	-
C	-	-	2.8	-	-
D	-	-	3.2	-	-
E	36	4,396	3.2	1,308	2,348

Poisson's Equation

- $\nabla^{2} u=f$
- Manufactured solution
$u=\sinh \left(\sin \left(x_{1}\right)\right) \sinh \left(\sin \left(x_{2}\right)\right) \sinh \left(\sin \left(x_{3}\right)\right)$
- Domain $\Omega=\left[\begin{array}{ll}0 & 1\end{array}\right]^{3}$
- Dirichlet boundary conditions

Poisson's Equation - Accuracy Analysis

Error versus mesh length scale
Poor performance of $k=2$ is expected (Ollivier-Gooch and Van Altena, 2002).

Poisson's Equation - Meshes

$$
N=10,20,40
$$

Hexahedra

Pyramids+Tetrahedra

Prisms

Tetrahedra

Inviscid Flow Around Sphere - Mach Contours

$$
k=1
$$

$$
k=2
$$

$$
k=3
$$

Computed Mach contours on the $x_{3}=0$ symmetry plane for the sphere problem

Sphere - Convergence

- Norm of the residual vector per PTC iteration
- Free-stream state as initial conditions.

Sphere - Performance

k	N-PTC	N-GMRES	Memory(GB)	LST(s)	TST(s)
$N_{\mathrm{CV}}=64 \mathrm{~K}$					
1	15	182	2.94	24	107
2	15	181	3.91	20	112
3	15	255	6.00	31	320
$N_{\mathrm{CV}}=322 \mathrm{~K}$					
1	16	207	13.24	134	579
2	16	212	14.05	132	620
3	16	300	28.39	271	1,879
$N_{\mathrm{CV}}=1 \mathrm{M}$					
1	17	275	39.48	486	1,969
2	17	277	45.52	536	2,150
3	17	385	85.78	793	5,904

Flat Plate - Convergence

- Norm of the residual vector per PTC iteration
- Solution of $(k+1)$-exact scheme is initialized with that of k-exact.

Flat Plate - Drag

Computed value and convergence order of the drag coefficient and the skin friction coefficient at the point $\mathbf{x}=(0.97,0,0.5)$

	$C_{\boldsymbol{D}}$			C_{f}		
NASA TMR	0.00286			0.00271		
Mesh	1	2	3	1	2	3
$60 \times 34 \times 7$	0.00396	0.00233	0.00233	0.00350	0.00228	0.00222
$120 \times 68 \times 14$	0.00301	0.00281	0.00285	0.00283	0.00268	0.00271
$240 \times 136 \times 28$	0.00287	0.00286	0.00286	0.00274	0.00273	0.00273
Convergence order	2.8	3.3	5.4	3	3	5.1

Flat Plate - Performance

k	N-PTC	N-GMRES	Memory(GB)	LST(s)	TST(s)
$60 \times 34 \times 7$ mesh					
1	26	844	0.42	31	55
2	26	1,009	1.35	42	124
3	26	1,071	2.10	57	202
$120 \times 68 \times 14$ mesh					
1	28	1,436	5.24	510	713
2	29	1,864	8.30	742	1,489
3	29	2,041	14.63	825	2,124
$240 \times 136 \times 28$ mesh					
1	29	2,492	38.77	6,222	7,884
2	27	3,305	60.70	12,353	18,137
3	27	2,906	121.81	23,141	35,412

Extruded NACA 0012 - \tilde{v}

Distribution of the turbulence working variable for the extruded NACA 0012 problem on the $x_{3}=0$ plane, $k=3$.

(a) Hexahedral mesh

(b) Mixed prismatic-hexahedral mesh

Extruded NACA 0012 - Drag

Computed value and convergence order of the drag coefficient and the skin friction coefficient at the point $\mathbf{x}=(0.97,0,0.5)$

k	$C_{D p}$	$C_{D v}$	C_{L}
NASA TMR			
-	0.00607	0.00621	1.0910
Hex mesh			
1	0.01703	0.00582	1.0619
2	0.01702	0.00497	1.0507
3	0.00301	0.00472	1.0417
Mixed mesh			
1	0.01129	0.00574	1.0735
2	0.00365	0.00565	1.0776
3	0.00550	0.00536	1.0869

Extruded NACA 0012 - Performance

k	N-PTC	N-GMRES	Memory(GB)	LST(s)	TST(s)
Hex mesh, $N_{\mathrm{CV}}=100 \mathrm{~K}$					
1	33	1,154	4.77	317	744
2	31	1,788	6.82	730	2,097
3	31	2,415	12.23	1,057	3,215
Mixed mesh, $N_{\mathrm{CV}}=176 \mathrm{~K}$					
1	34	1,132	8.70	458	1,164
2	32	1,769	10.87	800	2,427
3	31	2,185	26.47	1,311	4,666

