libMesh

A New User's Experience

Shayan Hoshyari

April, 2016

Outline

@ Getting Started
@ Introduction
@ Installing libMesh

© Application
@ A Sample Problem
@ The Code

© Further Functionality

Getting Started
°

Motivation

Major components of a mesh based numerical solution technique:

@ Read the mesh from file

Getting Started
°

Motivation

Major components of a mesh based numerical solution technique:

@ Read the mesh from file

@ Initialize data structures

Getting Started
°

Motivation

Major components of a mesh based numerical solution technique:

@ Read the mesh from file
@ Initialize data structures

© Construct a discrete representation of the governing equations

Getting Started
°

Motivation

Major components of a mesh based numerical solution technique:

© Read the mesh from file
@ Initialize data structures
© Construct a discrete representation of the governing equations

@ Solve the discrete system

Getting Started
°

Motivation

Major components of a mesh based numerical solution technique:

© Read the mesh from file

@ Initialize data structures

© Construct a discrete representation of the governing equations
@ Solve the discrete system

© Write out results

Getting Started
°

Motivation

Major components of a mesh based numerical solution technique:

© Read the mesh from file

@ Initialize data structures

© Construct a discrete representation of the governing equations
@ Solve the discrete system

© Write out results

@ Optionally estimate error, refine the mesh, and repeat

Getting Started
°

Motivation

Major components of a mesh based numerical solution technique:

© Read the mesh from file

@ Initialize data structures

© Construct a discrete representation of the governing equations
@ Solve the discrete system

© Write out results

@ Optionally estimate error, refine the mesh, and repeat

libMesh is a C4++ library that offers functionality to handle the
tasks above, with the exception of step 3.

Getting Started
°

Motivation

Major components of a mesh based numerical solution technique:

© Read the mesh from file

@ Initialize data structures

© Construct a discrete representation of the governing equations
@ Solve the discrete system

© Write out results

@ Optionally estimate error, refine the mesh, and repeat

libMesh is a C++ library that offers functionality to handle the
tasks above, with the exception of step 3.

Getting Started
®000

Resources

o libMesh website:
https://libmesh.github.io

o Stable Releases:
https://github.com/libMesh /libmesh /releases

o Development tree:
$ git clone git://github.com/libMesh/libmesh.git

Getting Started
oeo0o

Environment Variables

libMesh important directories
export LIBMESH_SRC="/path/to/libmesh/source/dir”
export LIBMESH_DIR="/path/to/libmesh/install/dir”

Flavour to be used in runtime:
export METHOD=" opt”

If you wish to compile with PETSc

MPI path is taken from PETSc configuration
export PETSCARCH="petsc—architecture”
export PETSC_DIR="/path/to/petsc”

Getting Started
ooeo

Configure and Make

Read through configure help first
./ configure —help

Configure libMesh

./ configure METHODS="dbg opt gprof” \
—disable—fortran \

—with—metis=PETSc \

—disable—strict—Igpl \
—prefix=/home/hooshi/code/libmesh /mpich—petsc \
—enable—laspack \

——enable—unique—ptr

Make and install
make —j 8
make install

Getting Started
oooe

Linking With libMesh

For small applications use the ‘libmesh-config' executable found in
the install directory.

‘libmesh—config —cxx " \
—o foo foo.C \
‘libmesh—config —cxxflags —include —Idflags '

For larger applications include Make.common in your Makefile. See
Makefiles in the example folders.

Application
[1]

Poisson Problem

@ The equation:
Au=f ue

@ Penalty method for Dirichlet boundary condition:
Lu(x) + up(x) = Luo(x) x € 02

@ A mesh with appropriate boundary tags should be available in
one of the many supported formats, e.g., gmsh, Triangle and
Tetgen.

Application
oe

Supported Mesh Elements

The mapping from the reference element to the
computational element.

Limits on the available finite element basis functions.

2, 3, and 4 noded edges (Edge2, Edge3, Edge4)

3 and 6 noded triangles (Tri3, Tri6)

4, 8, and 9 noded quadrilaterals (Quad4, Quad8, Quad9)
4 and 10 noded tetrahedrals (Tet4, Tet10)

8, 20, and 27 noded hexahedrals (Hex8, Hex20, Hex27)
6, 15, and 18 noded prisms (Prism6, Prism15, Prism18)

5, 13, and 14 noded pyramids (Pyramid5, Pyramid13,
Pyramid14)

Application
©000000

The main function

//Assembe Function to be introduced later
void assemble_poisson(EquationSystems& es, const string&);

int main (int argc, charsx argv)
{
// Initialize libraries.
LibMeshlnit init (argc, argv);

// Create a mesh
Mesh mesh(init.comm());

// Read the mesh

GmshlO gmsh(mesh);

gmsh.read (" ../ mesh/simple_box_5.msh"”);
mesh. all _second_order(true);

mesh. prepare_for_use ();

// Create an equation systems object.
EquationSystems equation_systems (mesh);

Application
0®00000

The main function

// Add a system to be solved
equation_systems.
add_system<LinearImplicitSystem> (" Poisson");

// Add a variable
equation_systems.get_system (" Poisson”)
.add_variable("u”, SECOND, HIERARCHIC);

// Attach the assembler function
equation_systems . get_system (" Poisson”)
.attach_assemble_function (assemble_poisson);

Application
00@0000

The main function

// Initialize the data structures.
equation_systems.init ();

// Solve the system
equation_systems.get_system (" Poisson”).solve ();

// write the results
VTKIO (mesh).write_equation_systems

("out.pvtu”, equation_systems);

return O;

Application
000®000

Systems

Some useful ones

o ExplicitSystem

LinearlmplicitSystem

TransientLinearlmplicitSystem

o
e DifferentiableSystem
e FEMSystem

Application
0000e00

Finite Element Families

Lagrange (Up to quadratic)
High Order CO

e Hierarchic
o Bernstein
o Szabo-Babuska

C1 elements

e Hermite
o Clough-Tocher

Discontinuous elements

o Monomials
o L2-Lagrange
o L2-Hierarchic
@ Vector-valued elements
o Lagrange-Vec
o Nedelec first type
e No Raviart-Thomas as of now

Application
00000@0

Assemble Function

Nomenclature for the ith degree of freedom and gth quadrature
point (volume or surface). J

Code Math Description
JxW [q] |[J(&)|w, | Jacobian times weight
phi [i] [q] di(&y) value of i shape fn.

dphi [1] [gq] | V@i(&,) | value of i shape fn. gradient

d2phi [i] [g] | VV(E,) | value of i shape fn. Hessian

xyz [q] x(&,) location of £, in physical space

normals[q]l | #(x(&)) | normal vector at x on a side ’~

Application
00000O0e

Assembling Local LHS and RHS

for(gq=0; q<Ng; ++q)
for (i=0; i<Ns; ++1i)

{

Fe(i) += JxW[q]l * f(xyz[ql)*philil[ql;

for (j=0; j<Ns; ++j)
Ke(i,j) += JxW[ql*(dphil[j] [q]l*dphilil [q]);

Fe =300 F(x(&)) ¢i(Eq) 1) wq
Ks = S0y V(&) - Vi) [9(&)Iwg

Application
00000O0e

Assembling Local LHS and RHS

for(gq=0; q<Ng; ++q)
for (i=0; i<Ns; ++1i)

{

Fe(i) += JxW[q]l * f(xyz[ql)*philil[ql;

for (j=0; j<Ns; ++j)
Ke(i,j) += JxW[ql*(dphil[j] [q]l*dphilil [q]);

Fe= 0" f(x(&)) 9i(&q) 19(E)Iwq
Ke = S0 V(&) - Vi) [9(&)Iwg

Application
00000O0e

Assembling Local LHS and RHS

for(gq=0; q<Ng; ++q)
for (i=0; i<Ns; ++1i)

{

Fe(i) += JxW[ql * f(xyz[ql)*philil[ql;

for (j=0; j<Ns; ++j)
Ke(i,j) += JxW[ql*(dphil[j] [q]l*dphilil [q]);

Fe =300 F(x(&)) ¢i(Eq) 1) wq
Ks = S0y V(&) - Vi) [9(&)Iwg

Application
00000O0e

Assembling Local LHS and RHS

for(gq=0; q<Ng; ++q)
for (i=0; i<Ns; ++1i)

{

Fe(i) += JxW[ql * f(xyz[ql)*phil[il[q];

for (j=0; j<Ns; ++j)
Ke(i,j) += JxW[ql*(dphil[j] [q]l*dphilil [q]);

Fe= 300 F(x(&)) ¢i(&q) 1) wq
Ks = S0y V(&) - Vi) [9(&)Iwg

Application
00000O0e

Assembling Local LHS and RHS

for(gq=0; q<Ng; ++q)
for (i=0; i<Ns; ++1i)

{

Fe(i) += JxW[q]l * f(xyz[ql)*philil[ql;

for (j=0; j<Ns; ++j)
Ke(i,j) += JxW[ql*(dphil[j] [q]l*dphilil [q]);

Fe= Y000 F(x(€q)) 0i(Eq) 1J(Eq) Iwq
Ks = S0t V(&) - Voi(&q) [J(Eq) Iwg

Application
00000O0e

Assembling Local LHS and RHS

for(gq=0; q<Ng; ++q)
for (i=0; i<Ns; ++1i)

{

Fe(i) += JxW[q]l * f(xyz[ql)*philil[ql;

for (j=0; j<Ns; ++j)
Ke(i,j) += JxW[ql*(dphil[j] [q]*dphilil [q]);

Fe =300 F(x(&)) ¢i(Eq) 1) wq
Ks = S0 V(&) - Vi) [I(&) I wg

Application
00000O0e

Assembling Local LHS and RHS

for(q=0; q<Nqg; ++q)
for (i=0; i<Ns; ++1i)

{

Fe(i) += JxW[q]l * f(xyz[ql)*philil[ql;

for (j=0; j<Ns; ++j)
Ke(i,j) += JxW[ql*(dphil[j][ql*dphil[i] [q]);

Fe =00 f(x(&)) ¢i(&q) 19(E)Iwq

K = zglil Vi(&q) - Vi(Eq) [4(Eq) vy

Further Functionality

Further Functionality

Runtime selection of solver package: PETSc, Trillinos,
Laspack

Code can be parallelized with minor changes through
threading or MPI

Various error estimation algorithms

Mesh adaptation and repartitioning in parallel

Discontinuous Galerkin Methods

Appendix
°

References

[§ Roy Stogner, Derek Gaston
libMesh Finite Element Library.
http://users.ices.utexas.edu/~roystgnr/
libmeshpdfs/roystgnr/sandia_libmesh.pdf

[§ Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
The libMesh Finite Element Library.
http://www.training.prace-ri.eu/uploads/tx_
pracetmo/libmesh.pdf

http://users.ices.utexas.edu/~roystgnr/libmeshpdfs/roystgnr/sandia_libmesh.pdf
http://users.ices.utexas.edu/~roystgnr/libmeshpdfs/roystgnr/sandia_libmesh.pdf
http://www.training.prace-ri.eu/uploads/tx_pracetmo/libmesh.pdf
http://www.training.prace-ri.eu/uploads/tx_pracetmo/libmesh.pdf

	Getting Started
	Introduction
	Installing libMesh

	Application
	A Sample Problem
	The Code

	Further Functionality
	Appendix

