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Resources

o libMesh website:
https://libmesh.github.io

o Stable Releases:
https://github.com/libMesh /libmesh /releases

o Development tree:
$ git clone git://github.com/libMesh/libmesh.git
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Environment Variables

# libMesh important directories
export LIBMESH_SRC="/path/to/libmesh/source/dir”
export LIBMESH_DIR="/path/to/libmesh/install/dir”

# Flavour to be used in runtime:
export METHOD=" opt”

# If you wish to compile with PETSc

# MPI path is taken from PETSc configuration
export PETSCARCH="petsc—architecture”
export PETSC_DIR="/path/to/petsc”
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Configure and Make

# Read through configure help first
./ configure —help

# Configure libMesh

./ configure METHODS="dbg opt gprof” \
—disable—fortran \

—with—metis=PETSc \

—disable—strict—Igpl \
—prefix=/home/hooshi/code/libmesh /mpich—petsc \
—enable—laspack \

——enable—unique—ptr

# Make and install
make —j 8
make install
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Linking With libMesh

For small applications use the ‘libmesh-config' executable found in
the install directory.

‘libmesh—config —cxx " \
—o foo foo.C \
‘libmesh—config —cxxflags —include —Idflags '

For larger applications include Make.common in your Makefile. See
Makefiles in the example folders.
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Poisson Problem

@ The equation:
Au=f ue

@ Penalty method for Dirichlet boundary condition:
Lu(x) + up(x) = Luo(x) x € 02

@ A mesh with appropriate boundary tags should be available in
one of the many supported formats, e.g., gmsh, Triangle and
Tetgen.
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Supported Mesh Elements

The mapping from the reference element to the
computational element.

Limits on the available finite element basis functions.

2, 3, and 4 noded edges (Edge2, Edge3, Edge4)

3 and 6 noded triangles (Tri3, Tri6)

4, 8, and 9 noded quadrilaterals (Quad4, Quad8, Quad9)
4 and 10 noded tetrahedrals (Tet4, Tet10)

8, 20, and 27 noded hexahedrals (Hex8, Hex20, Hex27)
6, 15, and 18 noded prisms (Prism6, Prism15, Prism18)

5, 13, and 14 noded pyramids (Pyramid5, Pyramid13,
Pyramid14)
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The main function

//Assembe Function to be introduced later
void assemble_poisson(EquationSystems& es, const string&);

int main (int argc, charsx argv)
{
// Initialize libraries.
LibMeshlnit init (argc, argv);

// Create a mesh
Mesh mesh(init.comm());

// Read the mesh

GmshlO gmsh(mesh);

gmsh.read (" ../ mesh/simple_box_5.msh"”);
mesh. all _second_order(true);

mesh. prepare_for_use ();

// Create an equation systems object.
EquationSystems equation_systems (mesh);
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The main function

// Add a system to be solved
equation_systems.
add_system<LinearImplicitSystem> (" Poisson");

// Add a variable
equation_systems.get_system (" Poisson”)
.add_variable("u”, SECOND, HIERARCHIC);

// Attach the assembler function
equation_systems . get_system (" Poisson”)
.attach_assemble_function (assemble_poisson);
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The main function

// Initialize the data structures.
equation_systems.init ();

// Solve the system
equation_systems.get_system (" Poisson” ).solve ();

// write the results
VTKIO (mesh).write_equation_systems

("out.pvtu”, equation_systems);

return O;
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Systems

Some useful ones

o ExplicitSystem

LinearlmplicitSystem

TransientLinearlmplicitSystem

o
e DifferentiableSystem
e FEMSystem
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Finite Element Families

Lagrange (Up to quadratic)
High Order CO

e Hierarchic
o Bernstein
o Szabo-Babuska

C1 elements

e Hermite
o Clough-Tocher

Discontinuous elements

o Monomials
o L2-Lagrange
o L2-Hierarchic
@ Vector-valued elements
o Lagrange-Vec
o Nedelec first type
e No Raviart-Thomas as of now
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Assemble Function

Nomenclature for the ith degree of freedom and gth quadrature
point (volume or surface). J

Code Math Description
JxW [q] |[J(&)|w, | Jacobian times weight
phi [i] [q] di(&y) value of i shape fn.

dphi [1] [gq] | V@i(&,) | value of i shape fn. gradient

d2phi [i] [g] | VV(E,) | value of i shape fn. Hessian

xyz [q] x(&,) location of £, in physical space

normals[q]l | #(x(&)) | normal vector at x on a side ’~
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Assembling Local LHS and RHS

for(gq=0; q<Ng; ++q)
for (i=0; i<Ns; ++1i)

{

Fe(i) += JxW[q]l * f(xyz[ql)*philil[ql;

for (j=0; j<Ns; ++j)
Ke(i,j) += JxW[ql*(dphil[j] [q]l*dphilil [q]);

Fe =300 F(x(&)) ¢i(Eq) 1) wq
Ks = S0y V(&) - Vi) [9(&)Iwg
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Further Functionality

Runtime selection of solver package: PETSc, Trillinos,
Laspack

Code can be parallelized with minor changes through
threading or MPI

Various error estimation algorithms

Mesh adaptation and repartitioning in parallel

Discontinuous Galerkin Methods
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