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Goals

Previously, we saw that a rigid motion, x = φ(X), can be expressed as:

x = R(q)X + P (q), (1)

where R is a rotation matrix, P is a translation vector, and q is the vector of con�gurations (degrees of
freedom).

In this lecture, the goal is to answer the following questions.

• How can the velocity of a rigid motion be described?

• What does the parameterization of R and P look like with respect to q?

Velocity for Rigid Motion

For a particle moving in the path x = x(t), the velocity is found as v(t) = ẋ = d
dtx(t). A schematic of this

concept is shown in below.

x(t)

v(t)=dx/dt

For a continuous medium, the velocity has the more general form of

v(X,t) = ẋ =
D
Dt
x(X,t),

where D represents the material derivative, i.e. it is evaluated when the Lagrangian coordinate X is con-
stant rather than the Eulerian coordinate x.

In order to evaluate the velocity �eld for the special case of the rigid motion, we recall that this type of
motion has the form of Eq. (1), where the rotation matrix R must satisfy the following constraints.

RTR = I, det(R) = +1. (2)

Although, Eq. (2) represents a series of non-linear dependent constraints, we will show that they can be
greatly simpli�ed when one looks at the velocity rather than the location. For simplicity, let us assume
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that there is no translation, P = 0. Taking the material derivative of x we would get:x = RX

RTR = I
⇒

ẋ = ṘX

X = RT x
→ ẋ = ṘRT x, (3)

where [ω] = ṘRT is known as the angular velocity matrix.

Lets us know transfer the constraints on R to [ω]:

RRT = I ⇒ ṘRT +RṘT = 0⇒ [ω] = −[ω]T .

This means that any skew-symmetric matrix can compactly describe the velocity of a rotational motion.
Also, we can see that in n dimensions n(n−1)

2 degrees of freedom are required to describe an angular velocity
matrix (1, 3, and 6 values for two, three, and four dimensions, respectively). As a special case [ω] is
represented as following in two and three dimensions:

[ω]2D =
[
0 −ω
ω 0

]
, [ω]3D =


0 −ωz ωy
ωz 0 −ωx
−ωy ωz 0


In 3-D, the angular velocity vector ω is de�ned as (ωx,ωy ,ωz). We can observe that [ω]x = ω × x, where
× represents the vector cross product. Therefore, the “[]” operator can be thought of as change of format
fromR3 toR9, transforming the angular velocity vector to the angular velocity matrix. This simpli�cation,
however, does not generalize to higher dimensions.

Having de�ned [ω], we now have the machinery to parameterize rotation.

Parameterizing Rotation

To parameterize rotation, we start by recalling Eq. (3). This equation represents a di�erential equation for
position x. For a �xed [ω], this equation can be solved using our knowledge of matrix exponential:

x = exp([ω]t)x(t = 0) = exp([ω]t)X. (4)

We can assume that any rotation R has happened during some imaginary time t ∈ [0,1] in the form
of R(t) = Rt, which gives [ω] = RRT . Then, plugging t = 1 in Eq. (4) this rotation can be written as
R = exp([ω]). Thus, we have worked out the inverse of Eq. (3) and expressed the rotation in terms of the
angular velocity. Schematically:

Finite rotation Skew-symmetric matrix
Log (equivalently RRT)

Exp

This gives us a nice way to parameterize �nite rotations by only using a skew-symmetric matrix. This
parameterization simpli�es to a vector in three dimensions with the direction of the vector representing
the axis of rotations and its magnitude the angle of rotation.

With the presented machinery, parameterizing a rigid motion in three dimension boils down to selecting
three degrees of freedom θ = (q1,q2,q3) that can represent the rotation part of the motion as exp([θ]),
and another three degrees of freedom (q4,q5,q6) that can be the coordinates of the translation vector p.
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Other ways to parameterize rotation

Complex numbers In 2-D, a rotation can be represented using complex numbers. A vector x = (x1,x2)
can be represented by the complex number x1+ix2, and a rotation equal to θ can be presented as exp(iθ) =

cos(θ) + i sin(θ). This is equivalent to associating the number 1 to the matrix
[
1 0
0 1

]
and the number i to

the matrix
[
0 −1
1 0

]
.

Unit quaternions In 3-D a rotation can be represented using unit quaternions (four scalars plus a con-
straint). This is not quite surprising since quaternions are somewhat a generalization of complex numbers
(tuples of two real numbers) to tuples of four real numbers.

Euler angles A 3-D rotation can be expressed in terms of Euler angles. First, a rotation of angle ψ (or
α) around the z axis, then a rotation of angle θ (or β) around the new x axis, and �nally a rotation of angle
φ (or γ) around the new z axis. A schematic is shown below.
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Other systems of angles Other systems include roll-yaw-pitch and Fick angles.
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