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Abstract

A considerable challenge in simulating large deformations in solids lies in keeping track of the material
motion. Lagrangian and Eulerian frameworks are among the main approaches for dealing with such prob-
lems. The former explicitly keeps track of the solid during the simulation, whereas the latter uses a fixed
spatial grid. The goal of this project is to implement a large deformation elasticity solver based on an Eule-
rian framework. The solver can simulate the deformation of a 1-D medium and its collision with different
fixed barriers. In 2-D, the solver can find the steady state deformation of a solid subject to fixed boundary
conditions. Code has also been written for simulating the translation and deformation of a solid with a free
a surface. However, the implementation still suffers from bugs and is not fully functional. The simplest
working underlying numerical methods are used, i.e., a first-order finite-difference spatial discretization,
a first-order explicit Euler temporal discretization, and handling of collisions via non-penetrating linear
constraints on velocity.

1. Introduction

Simulation of large deformations in solids is of interest in many fields such as mechanical engineering,
computer graphics, and biomechanics. For example, muscle tissue is a soft material, and its correct model-
ing, either for the purpose of physics based animation, or biomechanics design, requires modeling of large
deformations.

An important challenge in simulation of large deformations is keeping track of the solid and its motion.
A Lagrangian formulation explicitly follows each material particle. Thus, tracking free surfaces between
different material, and handling constitutive models that include displacement values are tasks well suited
for Lagrangian methods. However, these methods may require complicated geometrical and topological
operations, such as remeshing, mesh untangling, and collision detection. Eulerian frameworks, on the other
hand, are formulated using a fixed spacial grid. Although they are mostly suitable for constitutive models
that include rate of the displacement, they can still be used for free surface tracking, albeit by introduction
of additional variables such as reference maps and/or level sets. Hybrid approaches are also possible, such
as Arbitrary Eulerian Lagrangian (ALE) [1] and Eulerian on Lagrangian (EoL) methods [2].

Many industrially relevant problems include more than just a single solid with specified boundaries.
Rather, they include interactions between different materials, such as collisions between solids, or fluid-
solid interactions. Solution methods to these problems can be very different and heavily depend on the
quantities of interest. For example, solutions in the computer graphics community usually tend to be fast
and visually plausible at the cost of accuracy, whereas engineering communities might be more interested
in accuracy at the cost of solution speed.

Levin et al. [3] introduced a robust yet not so complicated Eulerian framework for the simulation of
transient frictionless solid contact in computer graphics. This Eulerian framework was based on the earlier
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work of Kamrin et al. [4], and was later extended by Teng et al. [5] to include fluid-solid interactions. The
goal of this work is the development of a C++/MATLAB (for 2-D/1-D) partial implementation of the work
of Levin et al. [3] and Kamrin et al. [4]. Examples of the following problems have been solved for a single
solid:

1. Steady-state problems with clamped boundaries in 2-D.
2. Transient problems with free boundaries and collision with fixed barriers in 1-D.
3. Uniform translation of a single solid in 2-D.

The biggest challenge of this work has been rediscovering many subtle points that are crucial to the con-
vergence of the solver, but are not covered in the references. Examples include the distance cut-off for
distinguishing ghost and internal vertices, boundary conditions, and the effect of ghost vertex extrapolation
on collision constraints. Getting these procedures to work has required extensive testing, deep study of the
failure cases, initial implementations in 1-D, and starting off by solving the equations with several terms
deactivated. Therefore, the solver is not able to solve more complicated problems given the time limit of a
course project.

The numerical method will be described in section 2, followed by the results in section 3. Finally, the
project is concluded section 4.

2. Method

2.1. Problem Statement
The deformation of a solid in Eulerian coordinates is prescribed by the equations

ρ(vt + v · ∇v) = ∇ · T + ρb, (a)

ρ = ρ0 det(∇ξ), (b)

ξt + v · ∇ξ = 0, (c)

(1)

where ξ is the reference map (or material coordinate), T is the Cauchy stress tensor, x is the physical
coordinate, v is the velocity, t is time, and b is the vector of body forces. Also, ρ0 and ρ represent the
density in the initial reference conditions and the physical space, respectively.

Given a solid as shown in figure 1-a, this project considers two cases. In the first case, the location of the
solid Ω and its boundary ∂Ω in the physical domain are prescribed, along with fixed boundary conditions

v(x, t) = 0; ξ(x, 0) = ξ0(x) x ∈ ∂Ω.

The goal is then to find the steady state deformation of the solid. Therefore, a damping term µ∇2v is added
to the right hand side of equation (1-a), and the solution is advanced in time until its rate of change be-
comes negligible. Since the steady-state solution of the velocity would be zero, this term will not introduce
additional errors. Section 3 further shows the effect of this damping term.

In the second case, the solid has a boundary which can move freely, so that the domain that the solid
occupies Ω would be changing over time. Assuming that the boundary of the solid ∂Ω is identified as the
iso-value of an implicit function φ, the free surface boundary conditions can be written as:

T (x, t)n = 0; φt + v · ∇φ = 0 x ∈ ∂Ω(t),

where n is the unit normal on the solid boundary. For fluid simulations, the signed distance function is
usually used as the implicit function φ, and is solved for as one of the variables. In this work, I follow
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Figure 1: Schematic of (a) the domain that the solid occupies in the physical space (b) the computational grid

Levin et al. [3], and use the reference map ξ itself as the surface tracking implicit function. Kamrin et al.
[4], on the other hand, follow the former approach and explicitly solve for the signed distance function.
Admittedly, I am still not very comfortable with free surfaces, and don’t have an intuition on the benefits
of using one surface tracking variable over the other. Collision of the solid with fixed barriers can also be
modeled by constraining the velocity to be non-penetrating on the barrier boundary [3].

To discretize the problem, the physical domain will be placed on a structured grid, as shown in figure 1-
c, where a control volume Ωi j is associated with every vertex. Then, the velocity and reference map values
are solved for at every grid point and time level. This process is addressed is three main steps: discretization
of the spacial terms, boundary conditions, and time advance.

2.2. Discretization of the Spacial Terms
Finite-difference approximations are mainly used in this work to evaluate a discrete approximation of the

differential operators in equation (1). To deal with the discontinuous density field due to the free boundary,
however, some ideas have to be borrowed from the finite-volume method: equation (1-a) is integrated inside
a control volume Ωi j, and the divergence theorem is used to yield∫

Ωi j

ρdΩ

 (vt + v · ∇v − b) −
∫
∂Ωi j

TndA = 0, (2)

where the term mi j =
∫
Ωi j
ρdΩ is evaluated using quadrature with a subgrid resolution. The conventional

finite-difference approximations can then be applied to discretize the equations (1-b), (1-c), and (2).
The advective terms v · ∇v and v · ∇ξ are evaluated using a first-order upwind difference scheme

(v · ∇χ)i j = max(vx, 0)
χi, j − χi−1, j

∆x
+ min(vx, 0)

χi+1, j − χi, j

∆x

+ max(vy, 0)
χi, j − χi, j−1

∆y
+ min(vy, 0)

χi, j+1 − χi, j

∆y
χ = vx, vy, ξ. (3)

The gradient of the reference map is evaluated at the cell centers using central difference formulas

(∇ξ)i+ 1
2 , j+

1
2

=

[ 1
2∆x (ξi+1, j + ξi+1, j+1 − ξi, j − ξi, j+1)T

1
2∆y (ξi, j+1 + ξi+1, j+1 − ξi, j − ξi+1, j)T

]T

, (4)
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which can be used to find the density and the Cauchy stress tensor at control volume boundaries to evaluate
the surface integral term in equation (2).

Combining the mentioned numerical approximations by introducing the differential operators R1 and
R2, and neglecting the boundary conditions, yield the following spacial discretization of the governing
equations

dvh

dt
= R1(vh, ξh)

dξh

dt
= R2(vh, ξh),

(5)

where vh and ξh are the vector of the nodal velocity and reference map values, respectively.

2.3. Boundary Conditions
Applying the boundary conditions are quite different depending on the condition type, and are as fol-

lows.

2.3.1. Clamped Boundaries
Assuming that the grid domain is large enough that the nodes on its boundaries are more than a cell

away from Ω, every vertex can be denoted either as active, ghost, or inactive. Vertices inside Ω which are
sufficiently far from ∂Ω, will be denoted as active. Here, I will use a threshold of min(∆x/2,∆y/2) as a
metric to determine being sufficiently far. Then, any vertex which shares a cell with an active vertex, will
be denoted as a ghost. All the other vertices are considered as inactive. The idea is to only solve for the
unknowns at the active vertices, and then extrapolate the solution from the active vertices and the boundary
conditions to find the solution values at the ghost vertices. To achieve this, the ray from every ghost vertex
to the nearest boundary point is followed until it intersects the first edge of the mesh whose vertices are both
active. The values of the solution at the nearest boundary point, and the vertices of the mentioned edge are
then used for extrapolation. For an annular domain, figure 2 shows the ghost vertices, the rays cast from
them to the closest boundary point, and the first internal edge that they intersect.

2.3.2. Free Boundaries
Handling problems with free boundaries has proved to be more challenging. For these problems, the

velocity v is only solved for at vertices with a non-zero mass mi j, and is then extrapolated to a larger vicinity
of the solid or the whole domain. The extrapolation procedure is taken from Bridson [6] where the velocity
at the closest active vertex (with respect to the Manhattan norm) is used as the extrapolated value. Also, the
stress terms Tn have to be set to zero for the control volume boundaries that lie outside the solid. Unlike
the velocity, the reference map ξ is solved for throughout the whole domain.

2.3.3. Time Advance
Time advance is finding the vector of nodal values at time level n + 1, given the vector of nodal values

at time level n. The method used in this work is that of the explicit Euler:

1. Update the velocity at vertices with non-zero mass: vn+1
h = vn

h + ∆tR1(vn
h, ξ

n
h).

2. Extrapolate the velocity.
3. Update the reference map: ξn+1

h = ξn
h + ∆tR2(vn+1

h , ξn
h).

where the superscript (.)n is used to denote the corresponding time level of a solution vector.
For 1-D problems, the time advance scheme can be further modified to handle collisions with fixed

barriers. Before updating the velocity, a check is made to see whether the solid penetrates a barrier (shown
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Figure 2: The rays that are used for extrapolating the solution values at ghost vertices for clamped boundaries: (a) all the rays (b)
a closeup
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Figure 3: Schematic of 1-D collision

in figure 3). Subsequently, the rate of the change of the penetration volume, ġ, is enforced to be negative
during the time advance. This rate of change can be written as

ġ = vs − vb = vi+1︸︷︷︸
active

(1 − q) + vi+2︸︷︷︸
ghost

(q) − vb︸︷︷︸
barrier

= vi−1 − vb,

where vs is the velocity of the solid at its endpoint, and vb is the velocity of the barrier. Other quantities are
depicted in figure 3. Since the constraint is linear, it can further be written in the compact form Jvh < c. It
can then be incorporated in the time advance scheme by solving the quadratic program

vn+1
h = arg min

vh
(
1
2

vh
T Mvh + RT

1∗vh) subject to Jvh ≤ c,

where M is a diagonal matrix containing the mi values, and R1∗ = Mvh
n + ∆tR1(vh

n, ξh
n).

5



10 22 × 10 3 3 × 10 3 4 × 10 3 6 × 10 3

h

10 3

10 2

10 1

L
 n

or
m

 o
f d

isc
re

tiz
at

io
n 

er
ro

r

f1x

f1y

f2x

f2y

O(h)

Figure 4: Truncation error of the finite-difference operators
with mesh refinement
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Figure 5: Discretization error in the solution of the annular
washer problem with mesh refinement

3. Results

3.1. Testing the Finite Difference Operators

To test the implementation of the finite-difference operators, the manufactured solution,

v =

[
cos(x) cos(y)
sin(2y) sin(x)

]
ξ =

[
cos(2x) cos(y)
sin(2y) cos(x)

]
, (6)

is used to construct source terms f1 and f2,

f1 = −v · ∇v +
1
ρ
∇ · T

f2 = −v · ∇ξ,
(7)

which can be evaluated both analytically, e.g., Matlab’s symbolic engine, and using the mentioned finite-
difference operators. The norm of the difference of the values obtained using these two methods should
approach zero with a rate of O(h), where h is the mesh length scale. Figure 4 shows the L∞ norm of
the mentioned difference for a series of refined meshes starting from 11 × 9 on the domain [0, 1] × [0, 1].
The desired order of accuracy is attained verifying the implementation of this part of the project. For
simplicity, the source terms are not evaluated at the grid boundaries. Also, a very simple stress model
T = [1, 5; 5, 9](∇ξ)−1 has been used.

3.2. A 2-D Steady State Problem – Annular Washer Shear

In this problem which is taken from Kamrin et al. [4], the outer boundary of a annular shear is rotated
while its inner boundary is held fixed. The solid and the mesh resemble those of figure 2-a. The reference
and physical solid domains are both an annulus with inner radius of 0.1 and an outer radius of 0.4. The
outer boundary is rotated π

6 radians counter-clockwise, yielding the boundary conditions

ξx = r cos(θ) ξy = r sin(θ) r = 0.1

ξx = r cos(θ − π/6) ξy = r sin(θ − π/6) r = 0.4,
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Figure 6: Solver convergence for the annular washer problem: (a) effect of damping (b) effect of mesh size

where (r, θ) is the polar coordinates of a point on the boundary. The initial condition for v is zero everywhere,
while ξ0 is evaluated by linearly interpolating the boundary conditions. The Levinson-Burgess model is used
as the stress constitutive relation

T = f1(I3)B + f2(I1, I3)I. (8)

Here, B = (∇ξ)−1(∇ξ)−T , I is the identity matrix, I1 = tr(B) and I3 = det(B) are the first and third invariants
of B, respectively, and

f1 =

(
3 +

1
I3

) (
4
√

I3
)−1

f2 =

√I3

5
6

+
1 − I1

4I2
3

 − 4
3

 .
The problem is solved on a series of nested meshes, and the error in the numerical solution is evaluated

by comparison to its exact counterpart v = 0 and ξ = (A − B/r2)eθ. As desired, figure 5 shows that the
discretization error is reduced with mesh refinement.

The effect of mesh size and damping on the solver convergence are also studied. Figure 6-a shows the
effect the damping term for a mesh size of 43 × 43 and ∆t = 0.1∆x. It is observed that the convergence
is considerably slow with no or small damping coefficients µ, while µ = 10∆x∆y seems to accelerate the
convergence the most. Figure 6-b shows the solver convergence with ∆t = 0.1∆x and µ = 10∆x∆y over
different mesh sizes. Not surprisingly, the finer the mesh, the more iterations are required.

3.3. A 1-D Transient Problem – Oscillating Solid

In this problem, a 1-D solid is compressed to 0.1 of its original volume and is then released with zero
initial velocity, as shown in figure 7. The simple stress model T = 1/ξx − 1 is used, along with a mesh size
of 200, and a time-step of ∆t = 0.1∆x. The solution at various times is shown in figure 8. As expected, the
solid keeps oscillating due to lack of damping.

3.4. A 1-D Transient Problem – Collisions

In this problem, a 1-D solid is placed between two fixed barriers (shown in figure 9). By setting the
initial velocity to the uniform value of one, and using no initial deformation, i.e., ξ(x, t = 0) = x, the solid
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Figure 8: Solution of the 1-D oscillating solid problem at various times.

will keep colliding with and bouncing off the barriers. This is consistent with the obtained solution shown
in figure 10.

In this problem, the effect of mesh size on the solution is also studied by solving the same problem
on mesh sizes 200, 400, and 800. Figure 11 shows the density profile at various times when the solid
is bouncing off the right barrier on the finest mesh. Interestingly, the shape of the density profile seems
to be the same between the different solutions. On the other hand, the coarse mesh solutions accumulate
considerable amounts of phase lag over time.

3.5. A 2-D Transient Problem – Uniform Translation
My attempts in dealing with 2-D transient problems have not been as successful in the time frame of

the project. The only problem I have been able to touch is that of a circular solid with a uniform initial
velocity, no gravity, and no initial deformation. As one would expect, the exact solution of this problem
would only include uniform translation according to the initial velocity, independent of the stress model. A
circular solid defined with the density field, ρ0(ξ) = 1 for ‖ξ‖22 ≤ 1 and 0 otherwise, is placed in the domain
[−2, 6] × [−1.25, 1.25] with a uniform initial velocity v0 = 1, and an initial reference map distribution of
ξ = x. To prevent additional hidden bugs affecting the results, the stress term in the equations has been
dropped, i.e., T = 0.

Figure 12 shows the solutions obtained from a grid size of 160 × 50 and a time-step of ∆t = 0.01. The
velocity extrapolation was only performed for vertices located within a topological distance of 10 from the
object. As expected, the velocity field stays constant within the extrapolation range. The reference map,
however, does not seem to preserve its linear profile within the solid, and builds up an increasing slope at
the front of the object. This in turn results in a non-constant density profile with a growing kink at the front
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Figure 10: Solution of the 1-D collision problem at various times.
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Figure 11: Effect of mesh size on the solution to the 1-D collision problem. The density is shown at various times when the object
on the finest mesh has collided with the right barrier and is being bounced back. As more time passes, the solution on the coarse
meshes accumulate larger amounts of phase lag.

9



Figure 12: Snapshots of the solution for the uniform translation problem of a 2-D circular solid. The figures from left to right show
t = 0, 0.2, and 0.4, respectively. The upper figures show the density and velocity on the whole domain, while the lower ones are
the plots of the quantities on the x = 0 line.

of the object. As a possible remedy, the velocity can be extrapolated throughout the whole domain, rather
than just the vicinity of the object.

In addition to the previous bug, I have not been able to obtain any results for a non-zero stress model. In
such a case, the velocity becomes oscillatory after some time, and the solution blows up. The solver cannot
be further developed until the culprit of these errors are found and eliminated.

4. Conclusions

In this work, a solution method was implemented for the simulation of large elastic deformations based
on an Eulerian formulation. Various problems were solved in one and two dimensions, and the effects of
various parameters were studied.
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